Trig double angle identities [203 marks]

1. Solve $\log_2(2\sin x) + \log_2(\cos x) = -1$, for $2\pi < x < \frac{5\pi}{2}$.

[7 marks]

Let $\sin \theta = \frac{\sqrt{5}}{3}$, where θ is acute.

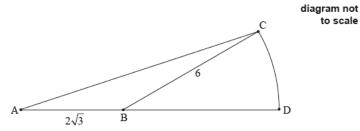
 $_{2a.}$ Find $\cos \theta .$

[3 marks]

 $_{\mathrm{2b.}}$ Find $\cos 2\theta .$

[2 marks]

The following diagram shows a triangle ABC and a sector BDC of a circle with centre B and radius 6 cm. The points A , B and D are on the same line



 $\mathrm{AB} = 2\sqrt{3}\;\mathrm{cm},\,\mathrm{BC} = 6\;\mathrm{cm},\,\mathrm{area}$ of triangle $\mathrm{ABC} = 3\sqrt{3}\;\mathrm{cm}^2,\mathrm{ABC}$ is obtuse.

 $_{
m 3a.}$ Find $_{
m ABC}$.

[5 marks]

3b. Find the exact area of the sector BDC.

[3 marks]

Given that

 $\sin x = \frac{3}{4}$, where x is an obtuse angle,

4a. find the value of $\cos x$;

[4 marks]

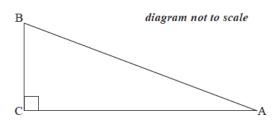
4b. find the value of $\cos 2x$.

[3 marks]

The following diagram shows a right-angled triangle,

ABC, where

$$\sin A = \frac{5}{13}.$$



5a. Show that $\cos A = \frac{12}{13}$.

[2 marks]

ind [3 marks]

In triangle

ABC,

 $AB=6\,\mathrm{cm}$ and

 $AC=8\,\mathrm{cm}.$ The area of the triangle is

 $16\,\mathrm{cm}^2$.

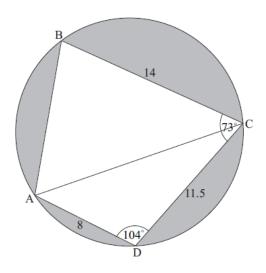
6a. Find the two possible values for $\hat{\lambda}$

[4 marks]

6b. Given that \hat{A} is obtuse, find BC.

[3 marks]

The diagram shows a circle of radius 8 metres. The points ABCD lie on the circumference of the circle.



BC = $14~\text{m, CD} = \\ 11.5~\text{m, AD} = \\ 8~\text{m,} \\ \hat{ADC} = 104^{\circ}~\text{, and} \\ \hat{BCD} = 73^{\circ}~\text{.}$

7a. Find AC. [3 marks]

7b. $\stackrel{\mbox{(i)}}{A\hat{C}D}$ Find

[5 marks]

(ii) Hence, find \hat{ACB} .

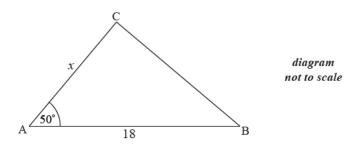
7c. Find the area of triangle ADC.

[2 marks]

 $_{\mbox{7d.}}$ Hence or otherwise, find the total area of the shaded regions.

[4 marks]

The following diagram shows a triangle ABC.



The area of triangle ABC is $80~{\rm cm^2}$, AB $=18~{\rm cm}$, AC $=x~{\rm cm}$ and ${\rm B\hat{A}C}=50^{\circ}$.

8a. Find [3 marks]

8b. Find BC. [3 marks]

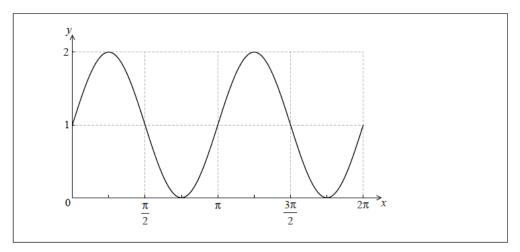
9a. Let $\sin 100^\circ = m. \ {\rm Find \ an \ expression \ for} \\ \cos 100^\circ \ {\rm in \ terms \ of} \ m.$

9b. Let $\sin 100^\circ = m \ . \ {\rm Find \ an \ expression \ for} \\ \tan 100^\circ \ {\rm in \ terms \ of} \ m.$

9c. Let $\sin 100^\circ = m. \ {\rm Find \ an \ expression \ for} \\ \sin 200^\circ \ {\rm in \ terms \ of} \ m.$

Let $f(x) = (\sin x + \cos x)^2$.

10a. Show that $f(x) \ {\rm can} \ {\rm be \ expressed \ as} \\ 1 + \sin 2x \ .$



Let

 $g(x)=1+\cos x$. On the same set of axes, sketch the graph of g for $0\leq x\leq 2\pi$.

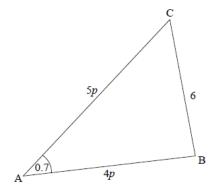
10c. The graph of g can be obtained from the graph of f under a horizontal stretch of scale factor p followed by a translation by the vector

[2 marks]

 $\begin{pmatrix} k \\ 0 \end{pmatrix}$

Write down the value of p and a possible value of k.

The following diagram shows a triangle ABC.



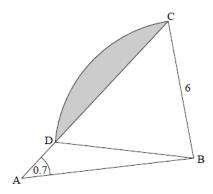
$${
m BC}=6$$
 ,
$${
m C\widehat{A}B}=0.7 \ {
m radians} \ ,$$
 ${
m AB}=4p$,
$${
m AC}=5p \ , \ {
m where}$$
 $p>0$.

11a. (i) Show that
$$p^2(41-40\cos 0.7)=36 \; . \label{eq:p2}$$

[4 marks]

(ii) Find p.

Consider the circle with centre B that passes through the point C. The circle cuts the CA at D, and \widehat{ADB} is obtuse. Part of the circle is shown in the following diagram.



11b. Write down the length of BD.

[1 mark]

11c. $\stackrel{\mathsf{Find}}{\widehat{\mathrm{ADB}}}$.

[4 marks]

11d. (i) Show that $C\widehat{B}D=1.29 \mbox{ radians, correct to 2 decimal places.}$

[6 marks]

(ii) Hence, find the area of the shaded region.

The following diagram shows ΔPQR , where RQ = 9 cm, $P\hat{R}Q=70^{\circ}$ and

 $\hat{PQR} = 45^{\circ}$.

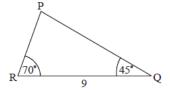


diagram not to scale

12a. $\frac{\text{Find}}{\hat{\mathrm{RPQ}}}$.

[1 mark]

12b. Find PR .

[3 marks]

12c. Find the area of $$\Delta \rm{PQR}$$.

[2 marks]

Let $\sin\theta = \frac{2}{\sqrt{13}} \text{ , where }$ $\frac{\pi}{2} < \theta < \pi$.

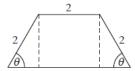
13a. $\frac{\mathsf{Find}}{\cos\theta}$

[3 marks]

13b. $\frac{\mathsf{Find}}{\tan 2\theta}$.

[5 marks]

The diagram below shows a plan for a window in the shape of a trapezium.



Three sides of the window are

 $2\ \mathrm{m}$ long. The angle between the sloping sides of thewindow and the base is

 $\boldsymbol{\theta}$, where

$$0< heta<rac{\pi}{2}$$
 .

14a. Show that the area of the window is given by $y = 4\sin\theta + 2\sin2\theta \; .$

[5 marks]

14b. Zoe wants a window to have an area of $5\ m^2.$ Find the two possible values of

[4 marks]

14c. John wants two windows which have the same area A but different values of $\frac{1}{\theta}$

[7 marks]

Find all possible values for A.

15a. Show that

$$4 - \cos 2\theta + 5\sin \theta = 2\sin^2\theta + 5\sin\theta + 3.$$

[2 marks]

15b. **Hence**, solve the equation

$$4-\cos 2 heta+5\sin heta=0$$
 for $0\leq heta\leq 2\pi$.

[5 marks]

The following diagram shows the triangle ABC.

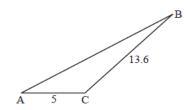


diagram not to scale

The angle at C is obtuse,

$$AC = 5 \text{ cm},$$

 $BC=13.6\ \mathrm{cm}$ and the area is

 $20\ \rm cm^2$.

16a. $\stackrel{\mathsf{Find}}{\widehat{\mathrm{ACB}}}$.

[4 marks]

16b. Find AB.

[3 marks]

The straight line with equation $y=\frac{3}{4}x$ makes an acute angle θ with the *x*-axis.

17a. Write down the value of $\tan \theta$.

[1 mark]

17b. Find the value of [6 marks]

 $\sin 2\theta$;

(ii) $\cos 2\theta$.

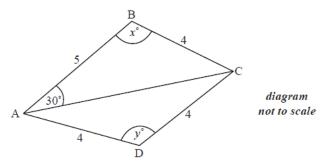
Let $f(x) = \cos 2x \text{ and } \\ g(x) = 2x^2 - 1 \ .$

18a. Find $f\left(\frac{\pi}{2}\right).$

18b. Find $(g\circ f)\left(\frac{\pi}{2}\right).$

18c. Given that $(g\circ f)(x) \text{ can be written as} \\ \cos(kx) \text{ , find the value of } k, \\ k\in\mathbb{Z} \ .$

The diagram below shows a quadrilateral ABCD with obtuse angles \widehat{ABC} and $\widehat{ADC}.$



AB = 5 cm, BC = 4 cm, CD = 4 cm, AD = 4 cm , $\widehat{BAC} = 30^\circ \; , \\ \widehat{ABC} = x^\circ \; ,$

 ${\widehat{\mathrm{ADC}}}=y^\circ$.

19a. Use the cosine rule to show that ${\rm AC} = \sqrt{41-40\cos x} \ .$

19b. Use the sine rule in triangle ABC to find another expression for AC. [2 marks]

19c. (i) Hence, find x, giving your answer to two decimal places. [6 marks]

(ii) Find AC .

19d. (i) Find y. [5 marks](ii) Hence, or otherwise, find the area of triangle ACD.

20. Solve $\frac{\cos 2x - 3\cos x - 3 - \cos^2 x = \sin^2 x}{0 \le x \le 2\pi} \text{, for}$

Let
$$f(x) = \sin^3\!x + \cos^3\!x \tan x, \tfrac{\pi}{2} < x < \pi \ .$$

21a. Show that
$$f(x) = \sin x$$
.

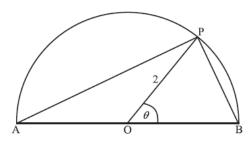
[2 marks]

21b. Let $\sin x = \frac{2}{3} \text{ . Show that}$ $f(2x) = -\frac{4\sqrt{5}}{9} \text{ .}$

[5 marks]

The following diagram shows a semicircle centre O, diameter [AB], with radius 2. Let P be a point on the circumference, with

 $\widehat{POB} = \theta$ radians.



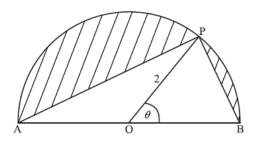
22a. Find the area of the triangle OPB, in terms of θ .

[2 marks]

22b. Explain why the area of triangle OPA is the same as the area triangle OPB.

[3 marks]

Let ${\cal S}$ be the total area of the two segments shaded in the diagram below.



22c. Show that $S = 2(\pi - 2\sin\theta) \; .$

[3 marks]

22d. Find the value of θ when ${\cal S}$ is a local minimum, justifying that it is a minimum.

[8 marks]

22e. Find a value of $\theta \mbox{ for which } S \mbox{ has its greatest value}.$

[2 marks]

23a. Given that $\cos A = \frac{1}{3} \text{ and } \\ 0 \leq A \leq \frac{\pi}{2} \text{ , find } \\ \cos 2A \text{ .}$

[3 marks]

23b. Given that $\frac{\sin B = \frac{2}{3}}{\sin B} \text{ and }$ $\frac{\pi}{2} \leq B \leq \pi \text{ , find }$ $\cos B \text{ .}$

[3 marks]

The expression $6\sin x\cos x$ can be expressed in the form $a\sin bx$.

 $_{24a.}$ Find the value of a and of b .

[3 marks]

24b. Hence or otherwise, solve the equation $6\sin x\cos x=\frac{_3}{^2} \text{ , for }$ $\frac{_\pi}{^4} \leq x \leq \frac{_\pi}{^2} \,.$

[4 marks]

© International Baccalaureate Organization 2018

International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for GEMS INTERNATIONAL SCHOOL AL KHAIL