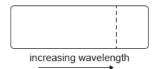
Ch 12 Decay and matter waves [31 marks]

1	Two radioactive nuclides, X and Y, have half-lives of 50 s and 100 s respectively. At time $t = 0$ samples of X and Y contain the same [1 ma	rk1
	number of nuclei.	,


What is $\frac{\text{number of nuclei of X undecayed}}{\text{number of nuclei of Y undecayed}}$ when t = 200 s?

- A. 4
- B 2
- C. -
- D. $\frac{1}{4}$

Markscheme

D

2. According to the Bohr model for hydrogen, visible light is emitted when electrons make transitions from excited states down to the state with n = 2. The dotted line in the following diagram represents the transition from n = 3 to n = 2 in the spectrum of hydrogen.

Which of the following diagrams could represent the visible light emission spectrum of hydrogen?

- A. .
- В.
- C. | | | | | | | |
- D. | | | | | | |

Markscheme

В

3. Alpha particles with energy E are directed at nuclei with atomic number Z. Small deviations from the predictions of the Rutherford scattering model are observed.

Which change in E and which change in Z is most likely to result in greater deviations from the Rutherford scattering model?

	E	Z
A.	increase	increase
B.	increase	decrease
C.	decrease	increase
D.	decrease	decrease

Markscheme

В

4. Which of the following is evidence for the wave nature of the electron?

- A. Continuous energy spectrum in β^- decay
- B. Electron diffraction from crystals
- C. Existence of atomic energy levels
- D. Existence of nuclear energy levels

Markscheme

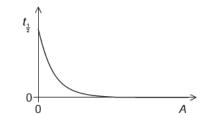
R

5. Two samples X and Y of different radioactive isotopes have the same initial activity. Sample X has twice the number of atoms as sample Y. The half-life of X is T. What is the half-life of Y?

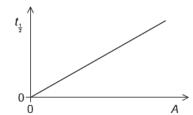
Λ O.T.

B. 7

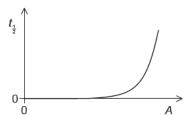
 $\frac{C}{T}$

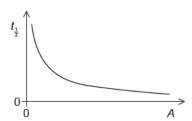

 $\frac{\mathsf{D}.}{\frac{T}{4}}$

Markscheme


С

6. Samples of different radioactive nuclides have equal numbers of nuclei. Which graph shows the relationship between the half-life $t_{\frac{1}{2}}$ [1 mark] and the activity A for the samples?


Α


B.

C.

D.

Markscheme

D

$$p + e^- \rightarrow X + Y$$
.

What are X and Y?

	Х	Y
A.	proton	positron
B.	electron	positron
C.	neutron	electron antineutrino
D.	neutron	electron neutrino

Markscheme

D

- 8. In the Bohr model for hydrogen an electron in the ground state has orbit radius *r* and speed *v*. In the first excited state the electron has orbit radius 4*r*. What is the speed of the electron in the first excited state?
 - A. $\frac{v}{2}$
 - B. $\frac{v}{4}$
 - C. $\frac{v}{0}$
 - D. $\frac{v}{16}$

Markscheme

Α

- 9. A radioactive element has decay constant λ (expressed in s⁻¹). The number of nuclei of this element at t = 0 is N. What is the expected number of nuclei that will have decayed after 1 s?
 - A. $N\left(1-e^{-\lambda}\right)$
 - B. $\frac{N}{\lambda}$
 - C. $Ne^{-\lambda}$
 - D. λN

Markscheme

Α

What are the half-life and the initial activity of a pure sample of mass 2m of the same radioactive substance?

	Half-life	Initial activity
A.	$T_{\frac{1}{2}}$	A_0
В.	$T_{\frac{1}{2}}$	2A ₀
C.	2T ₁ /2	A_0
D.	2T ₁ /2	2A ₀

Markscheme

В

11. A particle has a de Broglie wavelength λ and kinetic energy E. What is the relationship between λ and E?

[1 mark]

- A. $\lambda \propto E^{\frac{1}{2}}$
- B. $\lambda \propto E$
- C. $\lambda \propto E^{-\frac{1}{2}}$
- D. $\lambda \propto E^{-1}$

Markscheme

С

12. Which phenomenon provides evidence for the wave nature of an electron?

[1 mark]

- A. Line spectra of atoms
- B. Photoelectric effect
- C. Beta decay of nuclei
- D. Scattering of electrons by a crystal

Markscheme

D

[1 mark]

	Energy spectrum of β ⁺ particles	Energy spectrum of neutrinos
A.	discrete	discrete
B.	discrete	continuous
C.	continuous	discrete
D.	continuous	continuous

Markscheme

D

14. The following observations are made during nuclear decays.

[1 mark]

- I. Discrete energy of alpha particles
- II. Continuous energy of beta particles
- III. Discrete energy of gamma rays

Which of the observations provide evidence of the existence of nuclear energy levels?

- A. I only
- B. II only
- C. I and III only
- D. I, II and III

Markscheme

С

15. Three types of radiation emitted from radioactive materials are given below.

[1 mark]

- I. Alpha
- II. Beta
- III. Gamma

Which type(s) of radiation has/have a discrete energy when emitted from radioactive materials?

- A. I only
- B. I and III only
- C. I and II only
- D. I, II and III

В

16. Which of the following is correct for the de Broglie wavelength λ of a particle when the kinetic energy of the particle is E_K ?

[1 mark]

A. $\lambda \propto \frac{1}{E_{
m K}}$

B. $\lambda \propto \frac{1}{\sqrt{E_{\mathrm{K}}}}$

C. $\lambda \propto E_K$

D. $\lambda \propto E_K^{-2}$

Markscheme

В

17. Three phenomena associated with nuclear and quantum physics are

[1 mark]

I. Einstein photoelectric effect

II. de Broglie hypothesis

III. Rutherford alpha particle scattering.

Which of the phenomena can be verified by firing electrons at a metal surface?

A. I only

B. II only

C. I and III only

D. II and III only

Markscheme

В

18. A radioactive nuclide decays to a stable daughter nuclide. Initially the sample consists entirely of atoms of the radioactive nuclide.

[1]
What fraction of the sample consists of the daughter nuclide after four half-lives?

[1 mark]

A. $\frac{15}{16}$

B. $\frac{1}{16}$

C. $\frac{1}{8}$

D. $\frac{7}{8}$

Markscheme

Α

19. An electron X is accelerated from rest through a potential difference V. Another electron Y is accelerated from rest through a potential difference 2V. After acceleration, the de Broglie wavelength of X is λ_X and that of Y is λ_Y. The speeds reached by the electrons are well below that of the speed of light.

[1 mark]

What is the ratio $\frac{\lambda_X}{\lambda_V}$?

A. 2

B. $\sqrt{2}$

C. $\frac{1}{2}$

D. $\frac{1}{\sqrt{2}}$

Markscheme

В

20. If there is no uncertainty in the value of the de Broglie wavelength of a particle then this means that

[1 mark]

- A. both the momentum and position of the particle are known precisely.
- B. the position of the particle is known precisely but all knowledge of its momentum is lost.
- C. both the energy and the position of the particle are known precisely.
- D. only the momentum of the particle is known precisely but all knowledge of its position is lost.

Markscheme

D

21. An electron accelerated from rest through a potential difference *V* has de Broglie wavelength λ. What is the wavelength of an electron accelerated from rest through a potential difference of 2*V*?

[1 mark]

- Α. 2λ
- B. $\frac{\lambda}{2}$
- C. $\sqrt{2\lambda}$
- D. $\frac{\lambda}{\sqrt{2}}$

Markscheme

D

22. Evidence for nuclear energy levels comes from discrete energies of

[1 mark]

- I. alpha particles
- II. beta particles
- III. gamma ray photons.

Which of the above statements is/are true?

- A. I and II only
- B. I and III only
- C. II only
- D. III only

Markscheme

В

23 Which particles are emitted in β + decay?

[1 mark]

- A. Positron and neutrino
- B. Positron and antineutrino
- C. Electron and neutrino
- D. Electron and antineutrino

- 24. Alpha particles of charge +2e and mass m are accelerated from rest through a potential difference V. Planck's constant is h. Which of the following gives the de Broglie wavelength of the alpha particles as a result of the acceleration?
 - A. $\frac{h}{mV}$
 - B. $\frac{h}{\sqrt{4mVe}}$
 - C. $\sqrt{2hmVe}$
 - D. hmV

Markscheme

В

25. An electron of mass m_0 and a proton of mass m_0 are moving with the same kinetic energy at non-relativistic speeds. The de Broglie [1 mark] wavelengths associated with the electron and the proton are λ_0 and λ_0 respectively.

Which of the following correctly gives the ratio $\frac{\lambda_{\rm e}}{\lambda_{\rm D}}$?

- A. $\frac{m_p}{m_o}$
- B. $\frac{m_{\rm e}}{m_{\rm p}}$
- C. $\sqrt{\frac{m_{\mathrm{p}}}{m_{\mathrm{e}}}}$
- D. $\sqrt{\frac{m_{\rm e}}{m_{\rm p}}}$

Markscheme

С

- 26. A positively charged particle of charge q and mass m is accelerated from rest through a potential V. After acceleration the de Broglie [1 mark] wavelength of the particle is λ . Which of the following is equal to λ ?
 - A. $\frac{h}{\sqrt{2mqV}}$
 - B. $\frac{h}{\sqrt{mqV}}$
 - C. $\frac{hq}{\sqrt{2mV}}$
 - D. $\frac{hm}{\sqrt{2qV}}$

Markscheme

Α

27.	Electrons are accelerated from rest through a potential difference V . Their de Broglie wavelength is λ . The accelerating potential difference is increased to $2V$. Which of the following gives the new de Broglie wavelength? A. 2λ B. $\sqrt{2}\lambda$ C. $\frac{\lambda}{\sqrt{2}}$ D. $\frac{\lambda}{2}$	[1 mark]
28.	Which of the following provides evidence for the quantization of nuclear energy levels? I. Alpha particles have discrete values of kinetic energies II. Gamma-ray photons have discrete energies III. Atomic line emission spectra 1. I only 2. II only	[1 mark]
	3. I and II only 4. I, II and III Markscheme C	
29.	An electron is accelerated from rest through a potential difference V . Which of the following is the de Broglie wavelength of the electron after acceleration? A. $\frac{h}{\sqrt{2m_eVe}}$ B. $\sqrt{\frac{2m_eh}{V^2}}$ C. $\frac{h}{2m_eV^2e^2}$ D. $\frac{V^2}{2m_eh}$	[1 mark]
	Markscheme A	
30.	A beam of electrons is accelerated from rest through a potential difference V . The de Broglie wavelength of the electrons is λ . For electrons accelerated through a potential difference of $2V$ the de Broglie wavelength is A. 2λ B. $\sqrt{2\lambda}$ C. $\frac{\lambda}{2}$ D. $\frac{\lambda}{\sqrt{2}}$	[1 mark]
	Markscheme D	

31. The radii of nuclei can be estimated from experiments involving

[1 mark]

- A. the scattering of charged particles.
- B. the Bainbridge mass spectrometer.
- C. emission spectra.
- D. beta particle spectra.

Markscheme

Α

© International Baccalaureate Organization 2019
International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for GEMS INTERNATONAL SCHOOL AL KHAIL