

- 1. An object is positioned in a gravitational field. The measurement of gravitational force [1 mark] acting on the object has an uncertainty of 3 % and the uncertainty in the mass of the object is 9 %. What is the uncertainty in the gravitational field strength of the field?
 - A. 3 %
 - B.6%
 - C. 12 %
 - D. 27 %
- 2. What is a correct value for the charge on an electron?

[1 mark]

- A. 1.60 x $10^{-12} \,\mu\text{C}$
- B. 1.60 x 10⁻¹⁵ mC
- C. 1.60 x 10⁻²² kC
- D. 1.60 x 10⁻²⁴ MC
- 3. A stone falls from rest to the bottom of a water well of depth *d*. The time t taken to fall is[1 mark] 2.0 ±0.2 s. The depth of the well is calculated to be 20 m using $d = \frac{1}{2}at^2$. The uncertainty in a is negligible.

What is the absolute uncertainty in d?

- A. ± 0.2 m
- B. ±1 m
- C. ± 2 m
- D. ±4 m
- 4. Light of wavelength 400nm is incident on two slits separated by 1000μm. The [1 mark] interference pattern from the slits is observed from a satellite orbiting 0.4Mm above the Earth. The distance between interference maxima as detected at the satellite is
 - A. 0.16Mm. B. 0.16km. C. 0.16m. D. 0.16mm.
- 5. A car moves north at a constant speed of $3m \text{ s}^{-1}$ for 20s and then east at a constant [1 mark] speed of $4m \text{ s}^{-1}$ for 20s. What is the average speed of the car during this motion?
 - A. 7.0m s⁻¹ B. 5.0m s⁻¹ C. 3.5m s⁻¹ D. 2.5m s⁻¹

6. A sphere fits inside a cube.

The length of the cube and the diameter of the sphere are 10.0±0.2cm.

	What is the ratio $\frac{\text{percentageuncertaintyofthevolumeofthesphere}}{\text{percentageuncertaintyofthevolumeofthecube}}$? A. $\frac{3}{4\pi}$ B. 1 C. 2	
7.	 D. 8 What is the unit of energy density? A. J kg⁻¹ B. J kg⁻¹ m³ 	[1 mark]
	C. J mol ⁻¹ D. J K ⁻¹	
8.	Which of the following expresses the watt in terms of fundamental units? A. kg m ² s B. kg m ² s ⁻¹ C. kg m ² s ⁻² D. kg m ² s ⁻³	[1 mark]
9.	Which of the following expresses the units of capacitance in terms of fundamental units? A. $s^4A^2m^{-2}kg^{-1}$ B. $s^2Am^{-2}kg^{-1}$ C. $s^4A^2m^{-2}$ D. s^2Am^{-2}	[1 mark]

Data analysis question.

A simple pendulum of length / consists of a small mass attached to the end of a light string.

The time T taken for the mass to swing through one cycle is given by

$$T = 2\pi \sqrt{\frac{l}{g}}$$

where g is the acceleration due to gravity.

10. A student measures *T* for one length *l* to determine the value of *g*. Time [2 marks] $T = 1.9s \pm 0.1s$ and length $l = 0.880m \pm 0.001m$. Calculate the fractional uncertainty in *g*.

11. Which of the following is a fundamental unit?

[1 mark]

- A. Ampere
- B. Coulomb
- C. Ohm
- D. Volt

- 12. The maximum acceleration a_{max} of an oscillator undergoing simple harmonic motion [1 mark] (SHM) has a percentage uncertainty of 12%. The amplitude x_0 of the oscillation has a percentage uncertainty of 20%. If $k = \sqrt{\frac{a_{\text{max}}}{x_0}}$ what is the percentage uncertainty in the constant
 - k?
 - A. 4%
 - B. 8%
 - C. 16%
 - D. 32%
- 13. The radius of a sphere is measured with an uncertainty of 2%. What is the uncertainty in[1 mark] the volume of the sphere?
 - A. 2%
 - B. 4%
 - C. 6%
 - D. 8%
- 14. The volume *V* of a cylinder of radius *R* and height *H* is given by $V = \pi R^2 H$. The volume [1 mark] of the cylinder was measured with an uncertainty of 10% and the height was measured with an uncertainty of 6%. What is the uncertainty in the radius of the cylinder?
 - A. 1%
 - B. 2%
 - C. 4%
 - D. 8%

© International Baccalaureate Organization 2019 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for GEMS INTERNATONAL SCHOOL AL KHAIL