Last Drivatives [124 marks]

Let
$f(x)=\frac{100}{\left(1+50 \mathrm{e}^{-0.2 x}\right)}$. Part of the graph of
f is shown below.

1a. Write down $f(0)$.
[1 mark]

Markscheme

$f(0)=\frac{100}{51}$ (exact), $1.96 \quad$ A1 \quad N1
[1 mark]

1b. Solve $f(x)=95$.
[2 marks]

Markscheme

setting up equation (M1)
eg $95=\frac{100}{1+50 e^{-0.2 x}}$, sketch of graph with horizontal line at $y=95$
$x=34.3 \quad$ A1 \quad N2
[2 marks]

1c. Find the range of f.

Markscheme

upper bound of y is 100
lower bound of y is $0 \quad$ (A1)
range is $0<y<100 \quad$ A1 \quad N3
[3 marks]

1d. Show that $f^{\prime}(x)=\frac{1000 e^{-0.2 x}}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}}$.

Markscheme

METHOD 1

setting function ready to apply the chain rule
eg $100\left(1+50 \mathrm{e}^{-0.2 x}\right)^{-1}$
evidence of correct differentiation (must be substituted into chain rule) (A1)(A1)
eg $u^{\prime}=-100\left(1+50 \mathrm{e}^{-0.2 x}\right)^{-2}, v^{\prime}=\left(50 \mathrm{e}^{-0.2 x}\right)(-0.2)$
correct chain rule derivative A1
eg $f^{\prime}(x)=-100\left(1+50 \mathrm{e}^{-0.2 x}\right)^{-2}\left(50 \mathrm{e}^{-0.2 x}\right)(-0.2)$
correct working clearly leading to the required answer A1
eg $f^{\prime}(x)=1000 \mathrm{e}^{-0.2 x}\left(1+50 \mathrm{e}^{-0.2 x}\right)^{-2}$
$f^{\prime}(x)=\frac{1000 e^{-0.2 x}}{\left(1+50 e^{-0.2 x}\right)^{2}} \quad$ AG \quad NO

METHOD 2

attempt to apply the quotient rule (accept reversed numerator terms)
eg $\frac{v u^{\prime}-u v^{\prime}}{v^{2}}, \frac{u v^{\prime}-v u^{\prime}}{v^{2}}$
evidence of correct differentiation inside the quotient rule (A1)(A1)
eg $f^{\prime}(x)=\frac{\left(1+50 \mathrm{e}^{-0.2 x}\right)(0)-100\left(50 \mathrm{e}^{-0.2 x} \mathrm{x}-0.2\right)}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}}, \frac{100(-10) \mathrm{e}^{-0.2 x}-0}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}}$
any correct expression for derivative (0 may not be explicitly seen)
eg $\frac{-100\left(50 e^{-0.2 x} \times-0.2\right)}{\left(1+50 e^{-0.2 x}\right)^{2}}$
correct working clearly leading to the required answer
eg $f^{\prime}(x)=\frac{0-100(-10) \mathrm{e}^{-0.2 x}}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}}, \frac{-100(-10) \mathrm{e}^{-0.2 x}}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}}$
$f^{\prime}(x)=\frac{1000 e^{-0.2 x}}{\left(1+50 e^{-0.2 x}\right)^{2}} \quad$ AG \quad NO

[5 marks]

Markscheme
 METHOD 1
 sketch of $f^{\prime}(x) \quad$ (A1)

eg

recognizing maximum on $f^{\prime}(x) \quad$ (M1)
eg dot on max of sketch
finding maximum on graph of $f^{\prime}(x) \quad$ A1
eg (19.6, 5), $x=19.560 \ldots$
maximum rate of increase is $5 \quad$ A1 N2

METHOD 2

recognizing $f^{\prime \prime}(x)=0 \quad$ (M1)
finding any correct expression for $f^{\prime \prime}(x)=0 \quad$ (A1)
$e g \frac{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{2}\left(-200 \mathrm{e}^{-0.2 x}\right)-\left(1000 \mathrm{e}^{-0.2 x)}\left(2\left(1+50 \mathrm{e}^{-0.2 x}\right)\left(-10 \mathrm{e}^{-0.2 x}\right)\right)\right.}{\left(1+50 \mathrm{e}^{-0.2 x}\right)^{4}}$
finding $x=19.560 .$. A1
maximum rate of increase is 5 A1 N2
[4 marks]

Let
$f(x)=\frac{x}{-2 x^{2}+5 x-2}$ for
$-2 \leq x \leq 4$,
$x \neq \frac{1}{2}$,
$x \neq 2$. The graph of
f is given below.

The graph of
f has a local minimum at $\mathrm{A}($
1,

1) and a local maximum at B.

2a. Use the quotient rule to show that $f^{\prime}(x)=\frac{2 x^{2}-2}{\left(-2 x^{2}+5 x-2\right)^{2}}$.

Markscheme

correct derivatives applied in quotient rule (A1)A1A1
$1,-4 x+5$
Note: Award (A1) for 1, A1 for $-4 x$ and $\boldsymbol{A 1}$ for 5, only if it is clear candidates are using the quotient rule.
correct substitution into quotient rule A1
e.g. $\frac{1 \times\left(-2 x^{2}+5 x-2\right)-x(-4 x+5)}{\left(-2 x^{2}+5 x-2\right)^{2}}, \frac{-2 x^{2}+5 x-2-x(-4 x+5)}{\left(-2 x^{2}+5 x-2\right)^{2}}$
correct working (A1)
e.g. $\frac{-2 x^{2}+5 x-2-\left(-4 x^{2}+5 x\right)}{\left(-2 x^{2}+5 x-2\right)^{2}}$
expression clearly leading to the answer A1
e.g. $\frac{-2 x^{2}+5 x-2+4 x^{2}-5 x}{\left(-2 x^{2}+5 x-2\right)^{2}}$
$f^{\prime}(x)=\frac{2 x^{2}-2}{\left(-2 x^{2}+5 x-2\right)^{2}} \quad$ AG \quad NO

[6 marks]

2b. Hence find the coordinates of B.

Markscheme

evidence of attempting to solve $f^{\prime}(x)=0 \quad$ (M1)
e.g. $2 x^{2}-2=0$
evidence of correct working A1
e.g. $x^{2}=1, \frac{ \pm \sqrt{16}}{4}, 2(x-1)(x+1)$
correct solution to quadratic (A1)
e.g. $x= \pm 1$
correct x-coordinate $x=-1$ (may be seen in coordinate form $\left(-1, \frac{1}{9}\right)$) A1 \quad N2
attempt to substitute -1 into f (do not accept any other value) (M1)
e.g. $f(-1)=\frac{-1}{-2 \times(-1)^{2}+5 \times(-1)-2}$
correct working
e.g. $\frac{-1}{-2-5-2}$
correct y-coordinate $y=\frac{1}{9}$ (may be seen in coordinate form $\left(-1, \frac{1}{9}\right)$) \quad A1 \quad N2
[7 marks]

2c. Given that the line $y=k$ does not meet the graph of f, find the possible values of k. [3 marks]

Markscheme

recognizing values between max and min (R1)
$\frac{1}{9}<k<1 \quad$ A2 \quad N3
[3 marks]

Let
$g(x)=\frac{\ln x}{x^{2}}$, for
$x>0$.

3a. Use the quotient rule to show that $g^{\prime}(x)=\frac{1-2 \ln x}{x^{3}}$.

Markscheme

$\frac{\mathrm{d}}{\mathrm{d} x} \ln x=\frac{1}{x}, \frac{\mathrm{~d}}{\mathrm{~d} x} x^{2}=2 x$ (seen anywhere) A1A1
attempt to substitute into the quotient rule (do not accept product rule) M1
e.g. $\frac{x^{2}\left(\frac{1}{x}\right)-2 x \ln x}{x^{4}}$
correct manipulation that clearly leads to result A1
e.g. $\frac{x-2 x \ln x}{x^{4}}, \frac{x(1-2 \ln x)}{x^{4}}, \frac{x}{x^{4}}, \frac{2 x \ln x}{x^{4}}$
$g^{\prime}(x)=\frac{1-2 \ln x}{x^{3}} \quad$ AG \quad NO
[4 marks]

3b. The graph of g has a maximum point at A. Find the x-coordinate of A.

Markscheme

evidence of setting the derivative equal to zero (M1)
e.g. $g^{\prime}(x)=0,1-2 \ln x=0$
$\ln x=\frac{1}{2} \quad$ A1
$x=\mathrm{e}^{\frac{1}{2}} \quad$ A1 \quad N2
[3 marks]

The following diagram shows the graph of
$f(x)=\mathrm{e}^{-x^{2}}$.

The points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E lie on the graph off. Two of these are points of inflexion.

4a. Identify the two points of inflexion.

Markscheme

B, D A1A1 N2

[2 marks]

4b. (i) Find $f^{\prime}(x)$.
(ii) Show that $f^{\prime \prime}(x)=\left(4 x^{2}-2\right) \mathrm{e}^{-x^{2}}$.

Markscheme

(i) $f^{\prime}(x)=-2 x \mathrm{e}^{-x^{2}} \quad$ A1A1 \quad N2

Note: Award $\boldsymbol{A 1}$ for $\mathrm{e}^{-x^{2}}$ and $\boldsymbol{A 1}$ for $-2 x$.
(ii) finding the derivative of $-2 x$, i.e. -2
(A1)
evidence of choosing the product rule (M1)
e.g. $-2 \mathrm{e}^{-x^{2}}-2 x \times-2 x \mathrm{e}^{-x^{2}}$
$-2 \mathrm{e}^{-x^{2}}+4 x^{2} \mathrm{e}^{-x^{2}} \quad$ A1
$f^{\prime \prime}(x)=\left(4 x^{2}-2\right) \mathrm{e}^{-x^{2}} \quad$ AG \quad NO
[5 marks]

4c. Find the x-coordinate of each point of inflexion.

Markscheme

valid reasoning R1
e.g. $f^{\prime \prime}(x)=0$
attempting to solve the equation (M1)
e.g. $\left(4 x^{2}-2\right)=0$, sketch of $f^{\prime \prime}(x)$
$p=0.707\left(=\frac{1}{\sqrt{2}}\right), q=-0.707\left(=-\frac{1}{\sqrt{2}}\right) \quad$ A1A1 \quad N3
[4 marks]

4d. Use the second derivative to show that one of these points is a point of inflexion.

Markscheme

evidence of using second derivative to test values on either side of POI M1
e.g. finding values, reference to graph of $f^{\prime \prime}$, sign table
correct working A1A1
e.g. finding any two correct values either side of POI,
checking sign of $f^{\prime \prime}$ on either side of POI
reference to sign change of $f^{\prime \prime}(x) \quad$ R1 NO
[4 marks]

The diagram below shows a plan for a window in the shape of a trapezium.

Three sides of the window are
2 m long. The angle between the sloping sides of thewindow and the base is
θ, where
$0<\theta<\frac{\pi}{2}$.

5a. Show that the area of the window is given by $y=4 \sin \theta+2 \sin 2 \theta$.

Markscheme

evidence of finding height, $h \quad$ (A1)
e.g. $\sin \theta=\frac{h}{2}, 2 \sin \theta$
evidence of finding base of triangle, b (A1)
e.g. $\cos \theta=\frac{b}{2}, 2 \cos \theta$
attempt to substitute valid values into a formula for the area of the window
e.g. two triangles plus rectangle, trapezium area formula
correct expression (must be in terms of θ) A1
e.g. $2\left(\frac{1}{2} \times 2 \cos \theta \times 2 \sin \theta\right)+2 \times 2 \sin \theta, \frac{1}{2}(2 \sin \theta)(2+2+4 \cos \theta)$
attempt to replace $2 \sin \theta \cos \theta$ by $\sin 2 \theta \quad$ M1
e.g. $4 \sin \theta+2(2 \sin \theta \cos \theta)$
$y=4 \sin \theta+2 \sin 2 \theta \quad$ AG NO
[5 marks]

5b. Zoe wants a window to have an area of $5 \mathrm{~m}^{2}$. Find the two possible values of θ. [4 marks]

Markscheme

correct equation A1
e.g. $y=5,4 \sin \theta+2 \sin 2 \theta=5$
evidence of attempt to solve (M1)
e.g. a sketch, $4 \sin \theta+2 \sin \theta-5=0$
$\theta=0.856\left(49.0^{\circ}\right), \theta=1.25\left(71.4^{\circ}\right) \quad$ A1A1 \quad N3
[4 marks]

5c. John wants two windows which have the same area A but different values of θ. [7 marks] Find all possible values for A.

Markscheme

recognition that lower area value occurs at $\theta=\frac{\pi}{2}$
finding value of area at $\theta=\frac{\pi}{2} \quad$ (M1)
e.g. $4 \sin \left(\frac{\pi}{2}\right)+2 \sin \left(2 \times \frac{\pi}{2}\right)$, draw square
$A=4 \quad$ (A1)
recognition that maximum value of y is needed (M1)
$A=5.19615 \ldots \quad$ (A1)
$4<A<5.20$ (accept $4<A<5.19$) A2 N5
[7 marks]

Let
$f(x)=\frac{1}{2} x^{3}-x^{2}-3 x$. Part of the graph off is shown below.

There is a maximum point at A and a minimum point at $B(3,-9)$.

6a. Find the coordinates of A.

Markscheme

$f(x)=x^{2}-2 x-3 \quad$ A1A1A1
evidence of solving $f^{\prime}(x)=0 \quad$ (M1)
e.g. $x^{2}-2 x-3=0$
evidence of correct working A1
e.g. $(x+1)(x-3), \frac{2 \pm \sqrt{16}}{2}$
$x=-1$ (ignore $x=3$) (A1)
evidence of substituting their negative x-value into $f(x) \quad$ (M1)
e.g. $\frac{1}{3}(-1)^{3}-(-1)^{2}-3(-1),-\frac{1}{3}-1+3$
$y=\frac{5}{3} \quad$ A1
coordinates are $\left(-1, \frac{5}{3}\right) \quad$ N3
[8 marks]

6b. Write down the coordinates of
[6 marks]
(i) the image of B after reflection in the y-axis;
(ii) the image of B after translation by the vector $\binom{-2}{5}$;
(iii) the image of B after reflection in the x-axis followed by a horizontal stretch with scale factor $\frac{1}{2}$.

Markscheme

(i) $(-3,-9) \quad$ A1 \quad N1
(ii) $(1,-4) \quad$ A1A1 $\quad \mathbf{N} 2$
(iii) reflection gives $(3,9) \quad$ (A1)
stretch gives $\left(\frac{3}{2}, 9\right) \quad$ A1A1 \quad N3
[6 marks]

Let
$f(x)=\frac{\cos x}{\sin x}$, for
$\sin x \neq 0$.

7a. Use the quotient rule to show that $f^{\prime}(x)=\frac{-1}{\sin ^{2} x}$.

Markscheme

$\frac{\mathrm{d}}{\mathrm{d} x} \sin x=\cos x, \frac{\mathrm{~d}}{\mathrm{~d} x} \cos x=-\sin x$ (seen anywhere) (A1)(A1)
evidence of using the quotient rule M1
correct substitution A1
e.g. $\frac{\sin x(-\sin x)-\cos x(\cos x)}{\sin ^{2} x}, \frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x}$
$f^{\prime}(x)=\frac{-\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x} \quad$ A1
$f^{\prime}(x)=\frac{-1}{\sin ^{2} x} \quad$ AG \quad NO
[5 marks]

7b. Find $f^{\prime \prime}(x)$.

Markscheme METHOD 1
 appropriate approach (M1)
 e.g. $f^{\prime}(x)=-(\sin x)^{-2}$
 $f^{\prime \prime}(x)=2\left(\sin ^{-3} x\right)(\cos x)\left(=\frac{2 \cos x}{\sin ^{3} x}\right) \quad$ A1A1 \quad N3

Note: Award A1 for $2 \sin ^{-3} x, \boldsymbol{A 1}$ for $\cos x$.

METHOD 2

derivative of $\sin ^{2} x=2 \sin x \cos x$ (seen anywhere) A1
evidence of choosing quotient rule (M1)
e.g. $u=-1, v=\sin ^{2} x, f^{\prime \prime}=\frac{\sin ^{2} x \times 0-(-1) 2 \sin x \cos x}{\left(\sin ^{2} x\right)^{2}}$
$f^{\prime \prime}(x)=\frac{2 \sin x \cos x}{\left(\sin ^{2} x\right)^{2}}\left(=\frac{2 \cos x}{\sin ^{3} x}\right) \quad$ A1 \quad N3
[3 marks]

In the following table,

$$
\begin{aligned}
& f^{\prime}\left(\frac{\pi}{2}\right)=p \text { and } \\
& f^{\prime \prime}\left(\frac{\pi}{2}\right)=q . \text { The table also gives approximate values of } \\
& f^{\prime}(x) \text { and } \\
& f^{\prime \prime}(x) \text { near } \\
& x=\frac{\pi}{2} .
\end{aligned}
$$

x	$\frac{\pi}{2}-0.1$	$\frac{\pi}{2}$	$\frac{\pi}{2}+0.1$
$f^{\prime}(x)$	-1.01	p	-1.01
$f^{\prime \prime}(x)$	0.203	q	-0.203

7c. Find the value of p and of q.

Markscheme

evidence of substituting $\frac{\pi}{2} \quad$ M1
e.g. $\frac{-1}{\sin ^{2} \frac{\pi}{2}}, \frac{2 \cos \frac{\pi}{2}}{\sin ^{3} \frac{\pi}{2}}$
$p=-1, q=0 \quad$ A1A1 \quad N1N1
[3 marks]

7d. Use information from the table to explain why there is a point of inflexion on the graph [2 marks] of f where $x=\frac{\pi}{2}$.

Markscheme

second derivative is zero, second derivative changes sign R1R1 N2
[2 marks]

The graph has a local maximum when
$x=0$, and local minima when
$x=-3$,
$x=2$.

8a. Write down the x-intercepts of the graph of the derivative function, f^{\prime}.
[2 marks]

Markscheme

x-intercepts at $-3,0,2 \quad$ A2 \quad 2
[2 marks]

8b. Write down all values of x for which $f^{\prime}(x)$ is positive.
[2 marks]

Markscheme

$-3<x<0,2<x<3 \quad$ A1A1 \quad N2
[2 marks]

8c. At point D on the graph of f, the x-coordinate is -0.5 . Explain why $f^{\prime \prime}(x)<0$ at D . [2 marks]

Markscheme

correct reasoning R2
e.g. the graph of f is concave-down (accept convex), the first derivative is decreasing
therefore the second derivative is negative $\boldsymbol{A G}$
[2 marks]

Consider
$f(x)=x^{2}+\frac{p}{x}$,
$x \neq 0$, where p is a constant.

9a. Find $f^{\prime}(x)$.

Markscheme

$f^{\prime}(x)=2 x-\frac{p}{x^{2}} \quad$ A1A1 \quad N2

Note: Award $\mathbf{A 1}$ for $2 x, \boldsymbol{A 1}$ for $-\frac{p}{x^{2}}$.
[2 marks]

9b. There is a minimum value of $f(x)$ when $x=-2$. Find the value of p.
[4 marks]

Markscheme

evidence of equating derivative to 0 (seen anywhere) (M1)
evidence of finding $f^{\prime}(-2)$ (seen anywhere) (M1)
correct equation A1
e.g. $-4-\frac{p}{4}=0,-16-p=0$
$p=-16 \quad$ A1 \quad N3
[4 marks]

Let
$f(x)=3+\frac{20}{x^{2}-4}$, for
$x \neq \pm 2$. The graph of f is given below.

The y-intercept is at the point A .

10a. (i) Find the coordinates of A.
(ii) Show that $f^{\prime}(x)=0$ at A .

Markscheme

(i) coordinates of A are $(0,-2) \quad$ A1A1 \quad N2
(ii) derivative of $x^{2}-4=2 x$ (seen anywhere) (A1) evidence of correct approach (M1)
e.g. quotient rule, chain rule
finding $f^{\prime}(x) \quad$ A2
e.g. $f^{\prime}(x)=20 \times(-1) \times\left(x^{2}-4\right)^{-2} \times(2 x), \frac{\left(x^{2}-4\right)(0)-(20)(2 x)}{\left(x^{2}-4\right)^{2}}$
substituting $x=0$ into $f^{\prime}(x)$ (do not accept solving $f^{\prime}(x)=0$) M1
at A $f^{\prime}(x)=0 \quad$ AG \quad NO
[7 marks]

10b. The second derivative $f^{\prime \prime}(x)=\frac{40\left(3 x^{2}+4\right)}{\left(x^{2}-4\right)^{3}}$. Use this to
(i) justify that the graph of f has a local maximum at A ;
(ii) explain why the graph of f does not have a point of inflexion.

Markscheme

(i) reference to $f^{\prime}(x)=0$ (seen anywhere) (R1)
reference to $f^{\prime \prime}(0)$ is negative (seen anywhere) $\boldsymbol{R} 1$
evidence of substituting $x=0$ into $f^{\prime \prime}(x) \quad$ M1
finding $f^{\prime \prime}(0)=\frac{40 \times 4}{(-4)^{3}}\left(=-\frac{5}{2}\right) \quad$ A1
then the graph must have a local maximum AG
(ii) reference to $f^{\prime \prime}(x)=0$ at point of inflexion (R1) recognizing that the second derivative is never $0 \quad$ A1 \quad N2 e.g. $40\left(3 x^{2}+4\right) \neq 0,3 x^{2}+4 \neq 0, x^{2} \neq-\frac{4}{3}$, the numerator is always positive Note: Do not accept the use of the first derivative in part (b).
[6 marks]

10c. Describe the behaviour of the graph of f for large $|x|$.

Markscheme

correct (informal) statement, including reference to approaching $y=3 \quad$ A1 \quad N1
e.g. getting closer to the line $y=3$, horizontal asymptote at $y=3$
[1 mark]

10d. Write down the range of f.

Markscheme
 correct inequalities, $y \leq-2, y>3, \boldsymbol{F T}$ from (a)(i) and (c) A1A1 N2

[2 marks]

