
Last Drivatives [124 marks]

1a.

Let

 . Part of the graph of

 is shown below.

Write down  .

Markscheme
 (exact),      A1     N1

[1 mark]

f(x) = 100
(1+50e−0.2x)

f

f(0)

f(0) = 100
51 1.96

1b. Solve  .

Markscheme
setting up equation     (M1)

eg    , sketch of graph with horizontal line at 

     A1     N2

[2 marks]

f(x) = 95

95 = 100
1+50e−0.2x y = 95

x = 34.3

1c. Find the range of  .f

[1 mark]

[2 marks]

[3 marks]



Markscheme
upper bound of  is      (A1)

lower bound of  is      (A1)

range is      A1     N3

[3 marks]

y 100

y 0

0 < y < 100

1d. Show that  .

Markscheme
METHOD 1

setting function ready to apply the chain rule     (M1)

eg    

evidence of correct differentiation (must be substituted into chain rule)     (A1)(A1)

eg    ,  

correct chain rule derivative     A1

eg    

correct working clearly leading to the required answer     A1

eg    

     AG     N0

METHOD 2

attempt to apply the quotient rule (accept reversed numerator terms)     (M1)

eg    , 

evidence of correct differentiation inside the quotient rule     (A1)(A1)

eg    , 

any correct expression for derivative (  may not be explicitly seen)     (A1)

eg   

correct working clearly leading to the required answer     A1

eg    , 

     AG     N0

[5 marks]

f ′(x) = 1000e−0.2x

(1+50e−0.2x)2

100(1 + 50e−0.2x)−1

u′ = −100(1 + 50e−0.2x)−2 v′ = (50e−0.2x)(−0.2)

f ′(x) = −100(1 + 50e−0.2x)−2(50e−0.2x)(−0.2)

f ′(x) = 1000e−0.2x(1 + 50e−0.2x)−2

f ′(x) = 1000e−0.2x

(1+50e−0.2x)2

vu′−uv′

v2

uv′−vu′

v2

f ′(x) = (1+50e−0.2x)(0)−100(50e−0.2x×−0.2)

(1+50e−0.2x)2

100(−10)e−0.2x−0

(1+50e−0.2x)2

0
−100(50e−0.2x×−0.2)

(1+50e−0.2x)2

f ′(x) = 0−100(−10)e−0.2x

(1+50e−0.2x)2

−100(−10)e−0.2x

(1+50e−0.2x)2

f ′(x) = 1000e−0.2x

(1+50e−0.2x)2

1e. Find the maximum rate of change of  .f

[5 marks]

[4 marks]



Markscheme
METHOD 1

sketch of      (A1)

eg

recognizing maximum on      (M1)

eg dot on max of sketch

finding maximum on graph of      A1

eg   ( , ) , 

maximum rate of increase is      A1 N2

METHOD 2

recognizing      (M1)

finding any correct expression for       (A1)

eg   

finding      A1

maximum rate of increase is      A1     N2

[4 marks]

f ′(x)

f ′(x)

f ′(x)

19.6 5 x = 19.560 …

5

f ′′(x) = 0

f ′′(x) = 0

(1+50e−0.2x)2(−200e−0.2x)−(1000e−0.2x)(2(1+50e−0.2x)(−10e−0.2x))

(1+50e−0.2x)4

x = 19.560 …

5

Let



2a.

Let

 for

 ,

 ,

 . The graph of

 is given below.

The graph of

 has a local minimum at A(

,

) and a local maximum at B.

Use the quotient rule to show that  .

f(x) = x

−2x2+5x−2

−2 ≤ x ≤ 4
x ≠ 1

2

x ≠ 2
f

f

1
1

f ′(x) = 2x2−2

(−2x2+5x−2)2
[6 marks]



Markscheme
correct derivatives applied in quotient rule     (A1)A1A1

, 

Note: Award (A1) for 1, A1 for  and A1 for , only if it is clear candidates are using
the quotient rule.

correct substitution into quotient rule     A1

e.g.  , 

correct working     (A1)

e.g. 

expression clearly leading to the answer     A1

e.g. 

    AG     N0

[6 marks]

1 −4x + 5

−4x 5

1×(−2x2+5x−2)−x(−4x+5)

(−2x2+5x−2)2

−2x2+5x−2−x(−4x+5)

(−2x2+5x−2)2

−2x2+5x−2−(−4x2+5x)

(−2x2+5x−2)2

−2x2+5x−2+4x2−5x

(−2x2+5x−2)2

f ′(x) = 2x2−2

(−2x2+5x−2)2

2b. Hence find the coordinates of B.

Markscheme
evidence of attempting to solve      (M1)

e.g. 

evidence of correct working     A1

e.g. 

correct solution to quadratic     (A1)

e.g. 

correct x-coordinate  (may be seen in coordinate form  )    A1     N2

attempt to substitute  into f (do not accept any other value)     (M1)

e.g. 

correct working

e.g.      A1

correct y-coordinate  (may be seen in coordinate form  )    A1     N2

[7 marks]

f ′(x) = 0

2x2 − 2 = 0

x2 = 1, , 2(x − 1)(x + 1)±√16
4

x = ±1

x = −1 (−1, )1
9

−1

f(−1) = −1
−2×(−1)2+5×(−1)−2

−1
−2−5−2

y = 1
9 (−1, )1

9

2c. Given that the line  does not meet the graph of f , find the possible values of k .y = k

[7 marks]

[3 marks]



Markscheme
recognizing values between max and min     (R1)

     A2     N3

[3 marks]

< k < 11
9

3a.

Let

 , for

 .

Use the quotient rule to show that  .

Markscheme
 ,  (seen anywhere)     A1A1

attempt to substitute into the quotient rule (do not accept product rule)     M1

e.g. 

correct manipulation that clearly leads to result     A1

e.g.  ,  ,  , 

     AG     N0

[4 marks]

g(x) = ln x

x2

x > 0

g′(x) = 1−2 lnx

x3

ln x =d
dx

1
x

x2 = 2xd
dx

x2( )−2x lnx1
x

x4

x−2x lnx

x4

x(1−2 lnx)
x4

x

x4
2x lnx

x4

g′(x) = 1−2 lnx

x3

3b. The graph of g has a maximum point at A. Find the x-coordinate of A.

Markscheme
evidence of setting the derivative equal to zero     (M1)

e.g.  , 

     A1

     A1     N2

[3 marks]

g′(x) = 0 1 − 2 ln x = 0

ln x = 1
2

x = e
1
2

The following diagram shows the graph of

[4 marks]

[3 marks]



4a.

The following diagram shows the graph of

 .

The points A, B, C, D and E lie on the graph of f . Two of these are points of inflexion.

Identify the two points of inflexion.

Markscheme
B, D     A1A1     N2

[2 marks]

f(x) = e−x2

4b. (i)     Find  .

(ii)    Show that  .

Markscheme
(i)      A1A1     N2

Note: Award A1 for  and A1 for  .

(ii) finding the derivative of  , i.e.      (A1)

evidence of choosing the product rule     (M1)

e.g.  

     A1

     AG     N0

[5 marks]

f ′(x)

f ′′(x) = (4x2 − 2)e−x2

f ′(x) = −2xe−x2

e−x2 −2x

−2x −2

−2e−x2 −2x × −2xe−x2

−2e−x2 + 4x2e−x2

f ′′(x) = (4x2 − 2)e−x2

4c. Find the x-coordinate of each point of inflexion.

[2 marks]

[5 marks]

[4 marks]



Markscheme
valid reasoning     R1

e.g. 

attempting to solve the equation     (M1)

e.g.  , sketch of 

  ,       A1A1     N3

[4 marks]

f ′′(x) = 0

(4x2 − 2) = 0 f ′′(x)

p = 0.707 (= )1
√2

q = −0.707 (= − )1
√2

4d. Use the second derivative to show that one of these points is a point of inflexion.

Markscheme
evidence of using second derivative to test values on either side of POI     M1

e.g. finding values, reference to graph of  , sign table

correct working     A1A1

e.g. finding any two correct values either side of POI,

checking sign of  on either side of POI

reference to sign change of      R1     N0

[4 marks]

f ′′

f ′′

f ′′(x)

5a.

The diagram below shows a plan for a window in the shape of a trapezium.

Three sides of the window are

 long. The angle between the sloping sides of the window and the base is

 , where

 .

Show that the area of the window is given by  .

2 m
θ

0 < θ < π
2

y = 4 sin θ + 2 sin 2θ

[4 marks]

[5 marks]



Markscheme
evidence of finding height, h     (A1)

e.g.  , 

evidence of finding base of triangle, b     (A1)

e.g.  , 

attempt to substitute valid values into a formula for the area of the window     (M1)

e.g. two triangles plus rectangle, trapezium area formula

correct expression (must be in terms of  )     A1

e.g.  , 

attempt to replace  by      M1

e.g. 

     AG     N0

[5 marks]

sin θ = h
2 2 sin θ

cos θ = b
2 2 cos θ

θ

2 ( × 2 cos θ × 2 sin θ) + 2 × 2 sin θ1
2 (2 sin θ)(2 + 2 + 4 cos θ)1

2

2 sin θ cos θ sin 2θ

4 sin θ + 2(2 sin θ cos θ)

y = 4 sin θ + 2 sin 2θ

5b. Zoe wants a window to have an area of . Find the two possible values of  .

Markscheme
correct equation     A1

e.g.  , 

evidence of attempt to solve     (M1)

e.g. a sketch, 

  ,       A1A1     N3

[4 marks]

5 m2 θ

y = 5 4 sin θ + 2 sin 2θ = 5

4 sin θ + 2 sin θ − 5 = 0

θ = 0.856 (49.0∘) θ = 1.25 (71.4∘)

5c. John wants two windows which have the same area A but different values of  .

Find all possible values for A .

θ

[4 marks]

[7 marks]



Markscheme
recognition that lower area value occurs at      (M1)

finding value of area at      (M1)

e.g.  , draw square

     (A1)

recognition that maximum value of y is needed     (M1)

     (A1)

 (accept  )     A2      N5

[7 marks]

θ = π
2

θ = π
2

4 sin( ) + 2 sin(2 × )π
2

π
2

A = 4

A = 5.19615…

4 < A < 5.20 4 < A < 5.19

6a.

Let

 . Part of the graph of f is shown below.

There is a maximum point at A and a minimum point at B(3, − 9) .

Find the coordinates of A.

f(x) = x3 − x2 − 3x1
2

[8 marks]



Markscheme
     A1A1A1

evidence of solving      (M1)

e.g. 

evidence of correct working     A1

e.g.  ,  

 (ignore  )     (A1)

evidence of substituting their negative x-value into      (M1)

e.g.  , 

     A1

coordinates are      N3

[8 marks]

f(x) = x2 − 2x − 3

f ′(x) = 0

x2 − 2x − 3 = 0

(x + 1)(x − 3) 2±√16
2

x = −1 x = 3

f(x)

(−1)3 − (−1)2 − 3(−1)1
3 − − 1 + 31

3

y = 5
3

(−1, )5
3

6b. Write down the coordinates of

(i)     the image of B after reflection in the y-axis;

(ii)    the image of B after translation by the vector  ;

(iii)   the image of B after reflection in the x-axis followed by a horizontal stretch with scale factor
 .

Markscheme
(i)      A1     N1

(ii)      A1A1    N2

(iii) reflection gives      (A1)

stretch gives      A1A1     N3

[6 marks]

( −2
5

)

1
2

(−3, − 9)

(1, − 4)

(3, 9)

( , 9)3
2

7a.

Let

 , for

 .

Use the quotient rule to show that  .

f(x) = cos x
sin x

sin x ≠ 0

f ′(x) = −1
sin2x

[6 marks]

[5 marks]



Markscheme
 ,  (seen anywhere)     (A1)(A1)

evidence of using the quotient rule     M1

correct substitution     A1

e.g.  , 

     A1

     AG      N0

[5 marks]

sin x = cos xd
dx

cos x = − sin xd
dx

sin x(−sin x)−cosx(cosx)

sin2x

−sin2x−cos2x

sin2x

f ′(x) = −(sin2x+cos2x)

sin2x

f ′(x) = −1
sin2x

7b. Find  .

Markscheme
METHOD 1

appropriate approach     (M1)

e.g. 

      A1A1     N3

Note: Award A1 for  , A1 for  .

METHOD 2

derivative of  (seen anywhere)     A1

evidence of choosing quotient rule     (M1)

e.g.  ,   , 

      A1     N3

[3 marks]

f ′′(x)

f ′(x) = −(sin x)−2

f ′′(x) = 2(sin−3x)(cos x) (= )2 cosx

sin3x

2sin−3x cos x

sin2x = 2 sin x cos x

u = −1 v = sin2x f ′′ = sin2x×0−(−1)2 sin xcosx

(sin2x)
2

f ′′(x) = 2 sin xcosx

(sin2x)
2 (= )2 cosx

sin3x

In the following table,

[3 marks]



7c.

In the following table,

 and

 . The table also gives approximate values of

 and

 near

 .

Find the value of p and of q.

Markscheme
evidence of substituting      M1

e.g.  , 

 ,      A1A1     N1N1

[3 marks]

f ′ ( ) = pπ
2

f ′′ ( ) = qπ
2

f ′(x)
f ′′(x)
x = π

2

π
2

−1
sin2 π

2

2 cos π

2

sin3 π

2

p = −1 q = 0

7d. Use information from the table to explain why there is a point of inflexion on the graph
of f where  .

Markscheme
second derivative is zero, second derivative changes sign     R1R1     N2

[2 marks]

x = π
2

A function f is defined for

[3 marks]

[2 marks]



8a.

A function f is defined for

 . The graph of f is given below.

The graph has a local maximum when

 , and local minima when

 ,

 .

Write down the x-intercepts of the graph of the derivative function,  .

Markscheme
x-intercepts at , 0, 2     A2     N2

[2 marks]

−4 ≤ x ≤ 3

x = 0
x = −3
x = 2

f ′

−3

8b. Write down all values of x for which  is positive.

Markscheme
 ,      A1A1    N2

[2 marks]

f ′(x)

−3 < x < 0 2 < x < 3

8c. At point D on the graph of f , the x-coordinate is . Explain why  at D.

Markscheme
correct reasoning     R2

e.g. the graph of f is concave-down (accept convex), the first derivative is decreasing

therefore the second derivative is negative     AG

[2 marks]

−0.5 f ′′(x) < 0

Consider

[2 marks]

[2 marks]

[2 marks]



9a.

Consider

 ,

 , where p is a constant.

Find  .

Markscheme
     A1A1     N2

Note: Award A1 for  , A1 for  .

[2 marks]

f(x) = x2 + p

x

x ≠ 0

f ′(x)

f ′(x) = 2x − p

x2

2x − p

x2

9b. There is a minimum value of  when  . Find the value of  .

Markscheme
evidence of equating derivative to 0 (seen anywhere)     (M1)

evidence of finding  (seen anywhere)     (M1)

correct equation     A1

e.g.  , 

     A1     N3

[4 marks]

f(x) x = −2 p

f ′(−2)

−4 − = 0p

4 −16 − p = 0

p = −16

Let

[2 marks]

[4 marks]



10a.

Let

 , for

 . The graph of f is given below.

The y-intercept is at the point A.

(i)     Find the coordinates of A.

(ii)    Show that  at A.

Markscheme
(i) coordinates of A are      A1A1     N2

(ii) derivative of  (seen anywhere)     (A1)

evidence of correct approach     (M1)

e.g. quotient rule, chain rule

finding      A2

e.g.  , 

substituting  into  (do not accept solving  )     M1

at A      AG     N0

[7 marks]

f(x) = 3 + 20
x2−4

x ≠ ±2

f ′(x) = 0

(0, − 2)

x2 − 4 = 2x

f ′(x)

f ′(x) = 20 × (−1) × (x2 − 4)−2 × (2x) (x2−4)(0)−(20)(2x)

(x2−4)2

x = 0 f ′(x) f ′(x) = 0

f ′(x) = 0

10b. The second derivative  . Use this to

(i)     justify that the graph of f has a local maximum at A;

(ii)    explain why the graph of f does not have a point of inflexion.

f ′′(x) = 40(3x2+4)

(x2−4)3

[7 marks]

[6 marks]
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Markscheme
(i) reference to  (seen anywhere)     (R1)

reference to  is negative (seen anywhere)     R1

evidence of substituting  into      M1

finding       A1

then the graph must have a local maximum     AG

(ii) reference to  at point of inflexion     (R1)

recognizing that the second derivative is never 0     A1     N2

e.g.  ,  ,  , the numerator is always positive

Note: Do not accept the use of the first derivative in part (b).

[6 marks]

f ′(x) = 0

f ′′(0)

x = 0 f ′′(x)

f ′′(0) = 40×4
(−4)3 (= − )5

2

f ′′(x) = 0

40(3x2 + 4) ≠ 0 3x2 + 4 ≠ 0 x2 ≠ − 4
3

10c. Describe the behaviour of the graph of  for large  .

Markscheme
correct (informal) statement, including reference to approaching      A1     N1

e.g. getting closer to the line  , horizontal asymptote at 

[1 mark]

f |x|

y = 3

y = 3 y = 3

10d. Write down the range of  .

Markscheme
correct inequalities,  ,  , FT from (a)(i) and (c)     A1A1     N2

[2 marks]

f

y ≤ −2 y > 3

[1 mark]

[2 marks]
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