1. What is equivalent to \(\frac{\text{specific energy of a fuel}}{\text{density of the fuel}} \)?
 A. density of the fuel
 B.
 C. energy stored in the fuel
 D. \(\frac{\text{energy stored in the fuel}}{\text{density of the fuel}} \)

 Markscheme
 B

2. Three energy sources for power stations are
 I. fossil fuel
 II. pumped water storage
 III. nuclear fuel.

Which energy sources are primary sources?
 A. I and II only
 B. I and III only
 C. II and III only
 D. I, II and III

 Markscheme
 B
3. The diagram shows a simple climate model for the Earth. What does this model predict for the average albedo of the Earth?
 A. 0.30
 B. 0.51
 C. 0.70
 D. 0.81

 Markscheme
 A

4. A wind turbine has a power output p when the wind speed is v. The efficiency of the wind turbine does not change. What is the wind speed at which the power output is $\frac{p}{2}$?
 A. $\frac{v}{4}$
 B. $\frac{v}{\sqrt{2}}$
 C. $\frac{v}{2}$
 D. $\frac{v}{\sqrt[4]{8}}$

 Markscheme
 D

5. Three gases in the atmosphere are
 I. carbon dioxide (CO$_2$)
 II. dinitrogen monoxide (N$_2$O)
 III. oxygen (O$_2$).

 Which of these are considered to be greenhouse gases?
 A. I and II only
 B. I and III only
 C. II and III only
 D. I, II and III

 [1 mark]
6. Mars and Earth act as black bodies. The power radiated by Mars is \(p \) and the power radiated by the Earth is \(p \). The absolute mean temperature of the surface of Mars is \(t \) and the absolute mean temperature of the surface of the Earth is \(t \).

What is the value of \(\frac{\text{radius of Mars}}{\text{radius of the Earth}} \)?

A. \(\frac{p}{t} \)
B. \(\frac{\sqrt{p}}{t^2} \)
C. \(\frac{t^4}{p} \)
D. \(\frac{t^2}{\sqrt{p}} \)

Markscheme

B

7. A nuclear reactor contains atoms that are used for moderation and atoms that are used for control.

What are the ideal properties of the moderator atoms and the control atoms in terms of neutron absorption?

<table>
<thead>
<tr>
<th>Ideal moderator atom</th>
<th>Ideal control atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>poor absorber of neutrons</td>
<td>poor absorber of neutrons</td>
</tr>
<tr>
<td>poor absorber of neutrons</td>
<td>good absorber of neutrons</td>
</tr>
<tr>
<td>good absorber of neutrons</td>
<td>poor absorber of neutrons</td>
</tr>
<tr>
<td>good absorber of neutrons</td>
<td>good absorber of neutrons</td>
</tr>
</tbody>
</table>

Markscheme

B
8. The dashed line on the graph shows the variation with wavelength of the intensity of solar radiation before passing through the Earth’s atmosphere. The solid line on the graph shows the variation with wavelength of the intensity of solar radiation after it has passed through the Earth’s atmosphere.

![Graph showing variation with wavelength of solar radiation](source: Reproduced by permission of Martin Green, UNSW Sydney)

Which feature of the graph helps explain the greenhouse effect?

A. Infrared radiation is absorbed at specific wavelengths.
B. There is little absorption at infrared wavelengths.
C. There is substantial absorption at visible wavelengths.
D. There is little absorption at UV wavelengths.

Markscheme

A

9. The Sankey diagram shows the energy input from fuel that is eventually converted to useful domestic energy in the form of light in a filament lamp.

![Sankey diagram showing energy flow](source: Reproduced by permission of Martin Green, UNSW Sydney)

What is true for this Sankey diagram?

A. The overall efficiency of the process is 10%.
B. Generation and transmission losses account for 55% of the energy input.
C. Useful energy accounts for half of the transmission losses.
D. The energy loss in the power station equals the energy that leaves it.

Markscheme

A
10. What part of a nuclear power station is principally responsible for increasing the chance that a neutron will cause fission?
 A. Moderator
 B. Control rod
 C. Pressure vessel
 D. Heat exchanger

 Markscheme
 A

 The radioactive nuclide beryllium-10 (Be-10) undergoes beta minus (β^-) decay to form a stable boron (B) nuclide.

11a. Identify the missing information for this decay.

 $^{10}\text{Be} \rightarrow ^{10}\text{B} + \beta + \bar{\nu}_e$

 Markscheme
 $^{10}\text{Be} \rightarrow ^{10}\text{B} + \beta + \bar{\nu}_e$
 conservation of mass number **AND** charge ^{10}B, ^{10}Be
 Correct identification of both missing values required for [1].
 [1 mark]

 The initial number of nuclei in a pure sample of beryllium-10 is N_0. The graph shows how the number of remaining beryllium nuclei in the sample varies with time.

11b. On the graph, sketch how the number of boron nuclei in the sample varies with time.

 [2 marks]
11c. After \(4.3 \times 10^6\) years, \(\text{number of produced boron nuclei} \div \text{number of remaining beryllium nuclei} = 7\).

Show that the half-life of beryllium-10 is \(1.4 \times 10^6\) years.

Markscheme

ALTERNATIVE 1

fraction of Be = \(\frac{1}{8}\), 12.5%, or 0.125

therefore 3 half lives have elapsed

\[
\frac{3 \times 10^6}{3} = 1.43 \times 10^6 \approx 1.4 \times 10^6 \text{ years}.
\]

ALTERNATIVE 2

fraction of Be = \(\frac{1}{8}\), 12.5%, or 0.125

\[
\frac{1}{8} = e^{-\lambda (4.3 \times 10^6)} \text{ leading to } \lambda = 4.836 \times 10^{-7} \text{ years}^{-1}
\]

\[
\frac{1.92}{\lambda} = 1.43 \times 10^6 \text{ years}
\]

Must see at least one extra sig fig in final answer.

[3 marks]

11d. Beryllium-10 is used to investigate ice samples from Antarctica. A sample of ice initially contains \(7.6 \times 10^{11}\) atoms of beryllium-10.

State the number of remaining beryllium-10 nuclei in the sample after \(2.8 \times 10^6\) years.

Markscheme

\(1.9 \times 10^{11}\)

[1 mark]

An ice sample is moved to a laboratory for analysis. The temperature of the sample is \(-20^\circ\text{C}\).

11e. State what is meant by thermal radiation.

[1 mark]
Discuss how the frequency of the radiation emitted by a black body can be used to estimate the temperature of the body. [2 marks]

Markscheme

the (peak) wavelength of emitted em waves depends on temperature of emitter/reference to Wein’s Law
so frequency/color depends on temperature [2 marks]

Calculate the peak wavelength in the intensity of the radiation emitted by the ice sample. [2 marks]

Markscheme

\[\lambda = \frac{2.90 \times 10^{-4}}{293} \]

= 1.1 \times 10^{-5} \text{ m} \\

Allow ECF from MP1 (incorrect temperature). [2 marks]

Derive the units of intensity in terms of fundamental SI units. [2 marks]

Markscheme

correct units for Intensity (allow \(W, \text{Nms}^{-1} \ OR \text{Js}^{-1} \) in numerator)
rearrangement into proper SI units = \(\text{kgs}^{-3} \) \\

Allow ECF for MP2 if final answer is in fundamental units. [2 marks]
In a pumped storage hydroelectric system, water is stored in a dam of depth 34 m. The water leaving the upper lake descends a vertical distance of 110 m and turns the turbine of a generator before exiting into the lower lake.

Water flows out of the upper lake at a rate of 1.2×10^5 m3 per minute. The density of water is 1.0×10^3 kg m$^{-3}$.

12a. Estimate the specific energy of water in this storage system, giving an appropriate unit for your answer.

Markscheme

Average height $= 127$ m

Specific energy $= \frac{mgh}{m} = gh = 9.81 \times 127 = 1.2 \times 10^3$ J kg$^{-1}$

Unit is essential

Allow $g = 10$ gives 1.3×10^3 J kg$^{-1}$

Allow ECF from 110 m

$(1.1 \times 10^3$ J kg$^{-1}$) or 144 m

$(1.4 \times 10^3$ J kg$^{-1}$)

[2 marks]

12b. Show that the average rate at which the gravitational potential energy of the water decreases is 2.5 GW.

Markscheme

mass per second leaving dam is $\frac{1.2 \times 10^5}{60} \times 10^3 = 2.0 \times 10^8$ kg s$^{-1}$

rate of decrease of GPE is $2.0 \times 10^8 \times 9.81 \times 127$

$= 2.49 \times 10^9$ WI $/ 2.49$ GW

Do not award ECF for the use of 110 m or 144 m

Allow 2.4 GW if rounded value used from (a)(i) or 2.6 GW if $g = 10$ is used

[3 marks]

12c. The storage system produces 1.8 GW of electrical power. Determine the overall efficiency of the storage system.

[1 mark]
efficiency is $= \frac{1.8}{2.5} \approx 0.72 / 72\%$ [1 mark]

After the upper lake is emptied it must be refilled with water from the lower lake and this requires energy. Suggest how the operators of this storage system can still make a profit.

water is pumped back up at times when the demand for/price of electricity is low [1 mark]

Identify the missing information for this decay.

antineutrino AND charge AND mass number of electron $0^-e , \bar{V}$
conservation of mass number AND charge $^{10}_4B , ^{10}_4Be$

Do not accept V.
Accept \bar{V} without subscript e.
[2 marks]

On the graph, sketch how the number of boron nuclei in the sample varies with time.

correct shape ie increasing from 0 to about 0.80 N_0
crosses given line at 0.50 N_0
[2 marks]
13c. After 4.3×10^6 years, the number of produced boron nuclei is 7 times the number of remaining beryllium nuclei. Show that the half-life of beryllium-10 is 1.4×10^6 years.

Markscheme

ALTERNATIVE 1

fraction of Be = $\frac{1}{8}$, 12.5%, or 0.125

Therefore 3 half lives have elapsed

$$t_\frac{1}{2} = \frac{4.3 \times 10^6}{3} = 1.43 \times 10^6 \approx 1.4 \times 10^6 \text{ years}$$

ALTERNATIVE 2

fraction of Be = $\frac{1}{8}$, 12.5%, or 0.125

$$\frac{1}{8} = e^{-\lambda (4.3 \times 10^6)}$$

leading to

$$\lambda = 4.836 \times 10^{-7} \text{ year}^{-1}$$

$$\ln \frac{1}{8} = 1.43 \times 10^6 \text{ years}$$

Must see at least one extra sig fig in final answer.

[3 marks]

13d. Beryllium-10 is used to investigate ice samples from Antarctica. A sample of ice initially contains 7.6×10^{11} atoms of beryllium-10. The present activity of the sample is 8.0×10^{-3} Bq. Determine, in years, the age of the sample.

Markscheme

$$\lambda = \frac{\ln 2}{1.4 \times 10^6} = 4.95 \times 10^{-7} \text{ year}^{-1}$$

Rearranging $A = \lambda N_0 e^{-\lambda t}$ to give

$$-\lambda t = \ln \frac{8.0 \times 10^{-3} \times 365 \times 24 \times 60 \times 60}{4.95 \times 10^{-7} \times 7.6 \times 10^{11}}$$

$$t = \frac{-0.400}{4.95 \times 10^{-7}} = 8.1 \times 10^5 \text{ years}$$

Allow ECF from MP1

[3 marks]

13e. State what is meant by thermal radiation.

Markscheme

emission of (infrared) electromagnetic/infrared energy/waves/radiation.

[1 mark]

13f. Discuss how the frequency of the radiation emitted by a black body can be used to estimate the temperature of the body.

Markscheme

Discuss how the frequency of the radiation emitted by a black body can be used to estimate the temperature of the body.

[2 marks]
Markscheme
the (peak) wavelength of emitted em waves depends on temperature of emitter/reference to Wein’s Law
so frequency/color depends on temperature
[2 marks]

13g. Calculate the peak wavelength in the intensity of the radiation emitted by the ice sample. [2 marks]

Markscheme
\[\lambda = \frac{2.90 \times 10^{-4}}{253} \]
\[= 1.1 \times 10^{-5} \text{ m} \]
Allow ECF from MP1 (incorrect temperature).
[2 marks]

13h. The temperature in the laboratory is higher than the temperature of the ice sample. Describe one other energy transfer that occurs between the ice sample and the laboratory. [2 marks]

Markscheme
from the laboratory to the sample
conduction – contact between ice and lab surface.
OR
convection – movement of air currents
Must clearly see direction of energy transfer for MP1.
Must see more than just words “conduction” or “convection” for MP2.
[2 marks]

14. Which of the energy sources are classified as renewable and non-renewable? [1 mark]

<table>
<thead>
<tr>
<th>Renewable</th>
<th>Non-renewable</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Sun</td>
<td>wind</td>
</tr>
<tr>
<td>B. natural gas</td>
<td>geothermal</td>
</tr>
<tr>
<td>C. biomass</td>
<td>crude oil</td>
</tr>
<tr>
<td>D. uranium-235</td>
<td>coal</td>
</tr>
</tbody>
</table>

Markscheme
C
15. The energy density of a substance can be calculated by multiplying its specific energy with which quantity?

A. mass
B. volume
C. \(\frac{\text{mass}}{\text{volume}} \)
D. \(\frac{\text{volume}}{\text{mass}} \)

Markscheme

C

16. A black body emits radiation with its greatest intensity at a wavelength of \(I_{\text{max}} \). The surface temperature of the black body doubles without any other change occurring. What is the wavelength at which the greatest intensity of radiation is emitted?

A. \(I_{\text{max}} \)
B. \(\frac{I_{\text{max}}}{2} \)
C. \(\frac{I_{\text{max}}}{4} \)
D. \(\frac{I_{\text{max}}}{16} \)

Markscheme

B

17. The three statements give possible reasons why an average value should be used for the solar constant.

I. The Sun’s output varies during its 11 year cycle.
II. The Earth is in elliptical orbit around the Sun.
III. The plane of the Earth’s spin on its axis is tilted to the plane of its orbit about the Sun.

Which are the correct reasons for using an average value for the solar constant?

A. I and II only
B. I and III only
C. II and III only
D. I, II and III

Markscheme

A

A satellite powered by solar cells directed towards the Sun is in a polar orbit about the Earth.

The satellite is orbiting the Earth at a distance of 6600 km from the centre of the Earth.

18a. Determine the orbital period for the satellite.

Mass of Earth = \(6.0 \times 10^{24} \) kg
The satellite carries an experiment that measures the peak wavelength emitted by different objects. The Sun emits radiation that has a peak wavelength λ_S of 509 nm. The peak wavelength λ_E of the radiation emitted by the Earth is 10.1 µm.

18b. Determine the mean temperature of the Earth.

Markscheme

$$T = \frac{2.90 \times 10^{-3}}{\lambda_{max}}$$

$$= 287 \text{ K} \text{ or } 14 \text{ °C}$$

Award [0] for any use of wavelength from Sun

Do not accept 287 °C

18c. Suggest how the difference between λ_S and λ_E helps to account for the greenhouse effect.

Markscheme

wavelength of radiation from the Sun is shorter than that emitted from Earth «and is not absorbed by the atmosphere»

infrared radiation emitted from Earth is absorbed by greenhouse gases in the atmosphere

this radiation is re-emitted in all directions «including back to Earth»

18d. Not all scientists agree that global warming is caused by the activities of man.

Outline how scientists try to ensure agreement on a scientific issue.

Markscheme

peer review

international collaboration

full details of experiments published so that experiments can repeated

[Max 1 Mark]
19. The following are energy sources.
 I. a battery of rechargeable electric cells
 II. crude oil
 III. a pumped storage hydroelectric system

Which of these are secondary energy sources?
A. I and II only
B. I and III only
C. II and III only
D. I, II and III

Markscheme
B

20. Planet X and planet Y both emit radiation as black bodies. Planet X has a surface temperature that is less than the surface temperature of planet Y.

What is the graph of the variation of intensity I with wavelength λ for the radiation emitted by planet Y? The graph for planet X is shown dotted.

A. ![Graph A](image1)
B. ![Graph B](image2)
C. ![Graph C](image3)
D. ![Graph D](image4)

Markscheme
D

21. The average surface temperature of Mars is approximately 200 K and the average surface temperature of Earth is approximately 300 K. Mars has a radius half that of Earth. Assume that both Mars and Earth act as black bodies.

What is $\frac{\text{power radiated by Mars}}{\text{power radiated by Earth}}$?
A. 20
B. 5
C. 0.2
D. 0.05

Markscheme
D
22. The main role of a moderator in a nuclear fission reactor is to
A. slow down neutrons.
B. absorb neutrons.
C. reflect neutrons back to the reactor.
D. accelerate neutrons.

Markscheme
A

23. A room is at a constant temperature of 300 K. A hotplate in the room is at a temperature of 400 K and loses energy by radiation at a rate of \(P \). What is the rate of loss of energy from the hotplate when its temperature is 500 K?

A. \(\frac{4}{3}P \)
B. \(\frac{5+3P}{4+3P} \)
C. \(\frac{5P}{4} \)
D. \(\frac{5P-3P}{4+3P} \)

Markscheme
D

24. An object can lose energy through
I. conduction
II. convection
III. radiation

What are the principal means for losing energy for a hot rock resting on the surface of the Moon?
A. I and II only
B. I and III only
C. II and III only
D. I, II and III

Markscheme
B

25. The average albedo of glacier ice is 0.25.

What is \(\frac{\text{power absorbed by glacier ice}}{\text{power reflected by glacier ice}} \)?
A. 0.25
B. 0.33
C. 2.5
D. 3.0

Markscheme
D
Two renewable energy sources are solar and wind.

26a. Describe the difference between photovoltaic cells and solar heating panels. [1 mark]

Markscheme

solar heating panel converts solar/radiation/photon/light energy into thermal energy **AND** photovoltaic cell converts solar/radiation/photon/light energy into electrical energy

Accept internal energy of water.

26b. A solar farm is made up of photovoltaic cells of area 25 000 m2. The average solar intensity falling on the farm is 240 W m$^{-2}$ and the average power output of the farm is 1.6 MW. Calculate the efficiency of the photovoltaic cells. [2 marks]

Markscheme

power received = 240 × 25000 = 6.0 MW

efficiency = $\frac{1.6}{6.0} = 0.27 / 27\%$

26c. An alternative generation method is the use of wind turbines. The following data are available:

- Length of turbine blade = 17 m
- Density of air = 1.3 kg m$^{-3}$
- Average wind speed = 7.5 m s$^{-1}$

Determine the minimum number of turbines needed to generate the same power as the solar farm. [3 marks]

Markscheme

area = $\pi \times 17^2 = 908 m^2$

power = $\frac{1}{2} \times 908 \times 1.3 \times 7.5^3 = 0.249 MW$

number of turbines = $\frac{1.6}{0.249} = 6.4 = 7$

Only allow integer value for MP3.

Award [2 max] for 25 turbines (ECF from incorrect power)

Award [2 max] for 26 turbines (ECF from incorrect radius)

26d. Explain two reasons why the number of turbines required is likely to be greater than your answer to (c)(i). [2 marks]

Markscheme

«efficiency is less than 100% as»

not all KE of air can be converted to KE of blades

OR

air needs to retain KE to escape
thermal energy is lost due to friction in turbine/dynamo/generator

Allow velocity of air after turbine is not zero.
27a. Outline, with reference to energy changes, the operation of a pumped storage hydroelectric system.

Markscheme

PE of water is converted to KE of moving water/turbine to electrical energy «in generator/turbine/dynamo»

idea of pumped storage, *ie:* pump water back during night/when energy cheap to buy/when energy not in demand/when there is a surplus of energy

27b. The hydroelectric system has four 250 MW generators. The specific energy available from the water is 2.7 kJ kg⁻¹. Determine the maximum time for which the hydroelectric system can maintain full output when a mass of 1.5×10^{10} kg of water passes through the turbines.

Markscheme

total energy = «$2.7 \times 10^3 \times 1.5 \times 10^{10}$ =» 4.05 x 10^{13} «J»

time = «$\frac{4.05 \times 10^{13}}{4 \times 2.5 \times 10^5}$» 11.1 h or 4.0 x 10^4 s

For MP2 the unit must be present.

27c. Not all the stored energy can be retrieved because of energy losses in the system. Explain one such loss.

Markscheme

friction/resistive losses in walls of pipe/air resistance/turbulence/turbine and generator bearings

thermal energy losses, in electrical resistance of components

water requires kinetic energy to leave system so not all can be transferred

*Must see "seat of friction" to award the mark.

Do not allow "friction" bald.*

27d. At the location of the hydroelectric system, an average intensity of 180 W m⁻² arrives at the Earth’s surface from the Sun. Solar photovoltaic (PV) cells convert this solar energy with an efficiency of 22 %. The solar cells are to be arranged in a square array. Determine the length of one side of the array that would be required to replace the hydroelectric system.

Markscheme

area required = «$\frac{1 \times 10^9}{0.22 \times 180}$» = «2.5 \times 10^7$ m²»

length of one side = $\sqrt{2.5 \times 10^7}$ = 5.0 km

28a. Outline the conditions necessary for simple harmonic motion (SHM) to occur.

[2 marks]
markscheme
force/acceleration proportional to displacement «from equilibrium position»
and directed towards equilibrium position/point
or
and directed in opposite direction to the displacement from equilibrium position/point

Do not award marks for stating the defining equation for SHM. Award [1 max] for a \(\omega = \frac{a}{x} \) with \(a \) and \(x \) defined.

A buoy, floating in a vertical tube, generates energy from the movement of water waves on the surface of the sea. When the buoy moves up, a cable turns a generator on the sea bed producing power. When the buoy moves down, the cable is wound in by a mechanism in the generator and no power is produced.

![Diagram of buoy in a vertical tube with a cable connecting to a generator on the sea bed.](image)

The motion of the buoy can be assumed to be simple harmonic.

28b. A wave of amplitude 4.3 m and wavelength 35 m, moves with a speed of 3.4 m s\(^{-1}\). Calculate the maximum vertical speed of the buoy. [3 marks]

markscheme
frequency of buoy movement = \(\frac{35}{35} \) \(\text{or} \) 0.097 \(\text{Hz} \)

or
time period of buoy = \(\frac{35}{10.3} \) \(\text{or} \) 10.3 \(\text{s} \) \(\text{or} \) 10 \(\text{s} \)

\[v = \frac{2\pi f x_0}{T} \text{ or } 2\pi f x_0 \cdot \frac{2\pi x_0}{10.3} \text{ or } 2 \times \pi \times 0.097 \times 4.3 \\
2.6 \text{ m s}^{-1} \]

28c. Sketch a graph to show the variation with time of the generator output power. Label the time axis with a suitable scale. [2 marks]
Markscheme

peaks separated by gaps equal to width of each pulse «shape of peak roughly as shown»

one cycle taking 10 s shown on graph

Judge by eye.
Do not accept cos\(_2\) or sin\(_2\) graph
At least two peaks needed.
Do not allow square waves or asymmetrical shapes.
Allow ECF from (b)(i) value of period if calculated.

Water can be used in other ways to generate energy.

Outline, with reference to energy changes, the operation of a pumped storage hydroelectric system.

Markscheme

PE of water is converted to KE of moving water/turbine to electrical energy «in generator/turbine/dynamo»
idea of pumped storage, ie: pump water back during night/when energy cheap to buy/when energy not in demand/when there is a surplus of energy

The water in a particular pumped storage hydroelectric system falls a vertical distance of 270 m to the turbines. Calculate the speed at which water arrives at the turbines. Assume that there is no energy loss in the system.

Markscheme

specific energy available = "gh" = 9.81 x 270 = 2650J kg\(^{-1}\)

OR

\(mgh = \frac{1}{2}mv^2\)

OR

\(v^2 = 2gh\)

\(v = 73 \text{ ms}^{-1}\)

Do not allow 72 as round from 72.8

The hydroelectric system has four 250 MW generators. Determine the maximum time for which the hydroelectric system can maintain full output when a mass of \(1.5 \times 10^{10}\) kg of water passes through the turbines.

[2 marks]
Total energy = \(mgh = 1.5 \times 10^{10} \times 9.81 \times 270 = 4.0 \times 10^{13} \) J

OR

Total energy = \(\frac{1}{2}mv^2 = \frac{1}{2} \times 1.5 \times 10^{10} \times (\text{answer (c)(ii)})^2 = 4.0 \times 10^{13} \) J

Time = \(\frac{4.0 \times 10^{13}}{4.0 \times 10^{10}} = 11.1 \) h or \(4.0 \times 10^4 \) s

Use of \(3.97 \times 10^{13} \) J gives 11 h.

For MP2 the unit must be present.

Not all the stored energy can be retrieved because of energy losses in the system. Explain two such losses.

1. Friction/resistive losses in pipe/fluid resistance/turbulence/turbine or generator – bearings

2. Sound energy losses from turbine/water in pipe

3. Thermal energy/heat losses in wires/components

4. Water requires kinetic energy to leave system so not all can be transferred

Must see "seat of friction" to award the mark.

Do not allow "friction" bald.

The Sankey diagram represents the energy flow for a coal-fired power station.

What is the overall efficiency of the power station?

A. 0.3
B. 0.4
C. 0.6
D. 0.7
30. Which of the following is not a primary energy source?
 A. Wind turbine
 B. Jet engine
 C. Coal-fired power station
 D. Nuclear power station

31. What are the principal energy changes in a photovoltaic cell and in a solar heating panel?

<table>
<thead>
<tr>
<th>Photovoltaic cell</th>
<th>Solar heating panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>solar to electrical</td>
<td>solar to thermal</td>
</tr>
<tr>
<td>solar to thermal</td>
<td>solar to thermal</td>
</tr>
<tr>
<td>solar to electrical</td>
<td>electrical to thermal</td>
</tr>
<tr>
<td>solar to thermal</td>
<td>electrical to thermal</td>
</tr>
</tbody>
</table>

32. The solar constant is the intensity of the Sun's radiation at
 A. the surface of the Earth.
 B. the mean distance from the Sun of the Earth's orbit around the Sun.
 C. the surface of the Sun.
 D. 10km above the surface of the Earth.

33. X and Y are two spherical black-body radiators that emit the same total power. The absolute temperature of X is half that of Y.

What is \(\frac{\text{radius of } X}{\text{radius of } Y} \)?

A. 4
B. 8
C. 16
D. 32
The following data are available for a natural gas power station that has a high efficiency.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of consumption of natural gas</td>
<td>14.6 kg s(^{-1})</td>
</tr>
<tr>
<td>Specific energy of natural gas</td>
<td>55.5 MJ kg(^{-1})</td>
</tr>
<tr>
<td>Efficiency of electrical power generation</td>
<td>59.0 %</td>
</tr>
<tr>
<td>Mass of CO(_2) generated per kg of natural gas</td>
<td>2.75 kg</td>
</tr>
<tr>
<td>One year</td>
<td>3.16 \times 10^7 s</td>
</tr>
</tbody>
</table>

34a. Calculate, with a suitable unit, the electrical power output of the power station. [1 mark]

Markscheme

\[55.5 \times 14.6 \times 0.59 = 4.78 \times 10^8\] W
A unit is required for this mark. Allow use of J s\(^{-1}\).
No sf penalty.

34b. Calculate the mass of CO\(_2\) generated in a year assuming the power station operates continuously. [1 mark]

Markscheme

\[14.6 \times 2.75 \times 3.16 \times 10^7 = 1.27 \times 10^9\] kg
If no unit assume kg

34c. Explain, using your answer to (b), why countries are being asked to decrease their dependence on fossil fuels. [2 marks]

Markscheme

CO\(_2\) linked to greenhouse gas OR greenhouse effect
leading to «enhanced» global warming
OR
climate change
OR
other reasonable climatic effect

34d. Describe, in terms of energy transfers, how thermal energy of the burning gas becomes electrical energy. [2 marks]

Markscheme

Internal energy of steam/particles OR KE of steam/particles
«transfers to» KE of turbine
«transfers to» KE of generator OR dynamo «producing electrical energy»
Do not award mark for first and last energies as they are given in the question.
Do not allow “gas” for “steam”
Do not accept reference to moving OR turning generator
35. A solar panel has surface area 0.40m\(^2\) and efficiency 50%. The average intensity of radiation reaching the surface of the panel is 0.25kWm\(^{-2}\). What is the average power output from an array of 10 of these solar panels?

A. 0.5 W
B. 5 W
C. 50 W
D. 500 W

Markscheme

D

36. What is the correct order of energy transformations in a coal power station?

A. thermal → chemical → kinetic → electrical
B. chemical → thermal → kinetic → electrical
C. chemical → kinetic → thermal → electrical
D. kinetic → chemical → electrical → thermal

Markscheme

B

37. A black body of surface 1.0m\(^2\) emits electromagnetic radiation of peak wavelength 2.90\times10^{-6}m. Which of the following statements about the body are correct?

I. The temperature of the body is 1000 K.
II. The energy radiated by the body in one second is 5.7\times10^{-4}J.
III. The body is a perfect absorber of electromagnetic radiation.

A. I and II only
B. I and III only
C. II and III only
D. I, II and III

Markscheme

D