- 2. The average binding energy per nucleon of the ${}^{15}_{8}$ O nucleus is 7.5 MeV. What is the total energy required to separate the nucleons [1 mark] of one nucleus of ${}^{15}_{8}$ O?
 - A. 53 MeV

А

- B. 60 MeV
- C. 113 MeV
- D. 173 MeV

Markscheme

С

3. Two pure samples of radioactive nuclides X and Y have the same initial number of atoms. The half-life of X is $T_{\frac{1}{2}}$.

[1 mark]

```
After a time equal to 4 half-lives of X the ratio \frac{\text{number of atoms of X}}{\text{number of atoms of Y}} is \frac{1}{8}.
What is the half-life of Y?
A.
0.25T_{\frac{1}{2}}
B.
0.5T_{\frac{1}{2}}
C.
3T_{\frac{1}{2}}
D.
4T_{1}
```

	Markscheme	
4.	↑	mark]
	increasing energy	
	D. 7 Markscheme c	

A detector, placed close to a radioactive source, detects an activity of 260 Bq. The average background activity at this location is 20 [1 mark] 5. Bq. The radioactive nuclide has a half-life of 9 hours.

What activity is detected after 36 hours?

- A. - D
- В.
- C.
- D.

15 Bq
16 Bq
20 Bq
35 Bq

Markscheme		
D		

- Element X decays through a series of alpha (a) and beta minus (β^-) emissions. Which series of emissions results in an isotope of [1 mark] 6. Х?
 - A. 1 α and 2 β^-
 - B. 1 α and 4 β^-
 - C. 2α and $2\beta^{-}$
 - D. 2α and $3\beta^{-}$

Markscheme А

- 7. A graph of the variation of average binding energy per nucleon with nucleon number has a maximum. What is indicated by the region around the maximum? [1 mark]
 - A. The position below which radioactive decay cannot occur
 - B. The region in which fission is most likely to occur
 - C. The position where the most stable nuclides are found
 - D. The region in which fusion is most likely to occur

```
Markscheme
```

С

```
8. Three of the fundamental forces between particles are
```

- I. strong nuclear
- II. weak nuclear
- III. electromagnetic.

What forces are experienced by an electron?

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Markscheme

С

- 9. What is correct about the Higgs Boson?
 - A. It was predicted before it was observed.
 - B. It was difficult to detect because it is charged.
 - C. It is not part of the Standard Model.
 - D. It was difficult to detect because it has no mass.

Markscheme

А

10. Identify the conservation law violated in the proposed reaction.

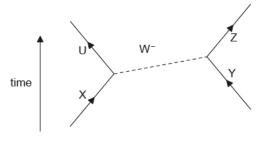
 $\mathsf{p^+} + \mathsf{p^+} \rightarrow \mathsf{p^+} + \mathsf{n^0} + \mu^+$

```
A. Strangeness
```

- B. Lepton number
- C. Charge
- D. Baryon number

Markscheme

В


[1 mark]

[1 mark]

- 11. Which statement about atomic spectra is **not** true?
 - A. They provide evidence for discrete energy levels in atoms.
 - B. Emission and absorption lines of equal frequency correspond to transitions between the same two energy levels.
 - C. Absorption lines arise when electrons gain energy.
 - D. Emission lines always correspond to the visible part of the electromagnetic spectrum.

12. The Feynman diagram shows a particle interaction involving a W^- boson.

Which particles are interacting?

A. U and Y

- B. W⁻ boson and Y
- C. X and Y
- D. U and X $% \left({{U_{\rm{A}}}} \right) = {\left({{U_{\rm{A}}}} \right)^2} \left({{U_{\rm{A}}}} \right)^2$

Markscheme

13. A nucleus of phosphorus (P) decays to a nucleus of silicon (Si) with the emission of particle X and particle Y.

$$^{30}_{15}{\rm P} \rightarrow {}^{30}_{14}{\rm Si} + {\rm X} + {\rm Y}$$

What are X and Y?

	x	Y
Α.	antineutrino	positron
В.	antineutrino	electron
C.	neutrino	electron
D.	neutrino	positron

Markscheme

D

[1 mark]

- 14. What is the definition of the unified atomic mass unit?
 - A. $\frac{1}{12}$ the mass of a neutral atom of carbon-12
 - B. The mass of a neutral atom of hydrogen-1
 - C. $\frac{1}{12}$ the mass of a nucleus of carbon-12
 - D. The mass of a nucleus of hydrogen-1

Markscheme		
А		

15. In nuclear fission, a nucleus of element X absorbs a neutron (n) to give a nucleus of element Y and a nucleus of element Z. [1 mark]

 $\mathsf{X} + \mathsf{n} \to \mathsf{Y} + \mathsf{Z} + 2\mathsf{n}$

What is $\frac{\text{magnitude of the binding energy per nucleon of Y}}{\text{magnitude of the binding energy per nucleon of X}}$ and $\frac{\text{total binding energy of Y and Z}}{\text{total binding energy of X}}$?

	Magnitude of the binding energy per nucleon of Y Magnitude of the binding energy per nucleon of X	Total binding energy of Y and Z Total binding energy of X	
۹.	greater than 1	greater than 1	
3.	less than 1	greater than 1	
D.	greater than 1	less than 1	
D.	less than1	less than 1	

Markscheme

А

- 16. What is the energy equivalent to the mass of one proton?
 - A. $9.38\times(3\times10^8)^2\times10^6~J$
 - B. $9.38 \times (3 \times 10^8)^2 \times 1.6 \times 10^{-19} \text{ J}$
 - C. $\frac{9.38 \times 10^8}{1.6 \times 10^{-19}}$ J
 - D. $9.38 \times 10^8 \times 1.6 \times 10^{-19} \text{ J}$

Markscheme

D

17. Atomic spectra are caused when a certain particle makes transitions between energy levels. What is this particle?

- A. Electron
- B. Proton
- C. Neutron

А

D. Alpha particle

Markscheme

[1 mark]

```
18. The half-life of a radioactive element is 5.0 days. A freshly-prepared sample contains 128 g of this element. After how many days
                                                                                                                                 [1 mark]
    will there be 16 g of this element left behind in the sample?
    A. 5.0 days
    B. 10 days
    C. 15 days
    D. 20 days
      Markscheme
      С
19. The binding energy per nucleon of {}^{11}_4Be is 6 MeV. What is the energy required to separate the nucleons of this nucleus?
                                                                                                                                 [1 mark]
    A. 24 MeV
    B. 42 MeV
    C. 66 MeV
    D. 90 MeV
      Markscheme
      С
20. The reaction p^+ + n^0 \rightarrow p^+ + \pi^0 does not occur because it violates the conservation law of
                                                                                                                                 [1 mark]
    A. electric charge.
    B. baryon number.
    C. lepton number.
    D. strangeness.
```

Markscheme

21. A pure sample of nuclide A and a pure sample of nuclide B have the same activity at time t = 0. Nuclide A has a half-life of *T*, [1 mark] nuclide B has a half-life of 2*T*.

```
What is \frac{\text{activity of A}}{\text{activity of B}} when t = 4T?
```

- A. 4
 B. 2
 C. ¹/₂
- D. $\frac{1}{4}$

Markscheme

D

22. Photons of energy 2.3eV are incident on a low-pressure vapour. The energy levels of the atoms in the vapour are shown

[1 mark]

0.01/	
061	

-1.6eV -----

-2.5eV -----

-3.9 eV ---- not to scale

What energy transition will occur when a photon is absorbed by the vapour?

A. -3.9eV to -1.6eV

B. -1.6eV to 0eV

C. -1.6eV to -3.9eV

D. 0eV to -1.6eV

Markscheme

А

23. When an alpha particle collides with a nucleus of nitrogen-14 $\binom{14}{7}$, a nucleus X can be produced together with a proton. What is [1 mark] X?

A. ¹⁸₈X B. ¹⁷₈X

C. ¹⁸₉X

- 9

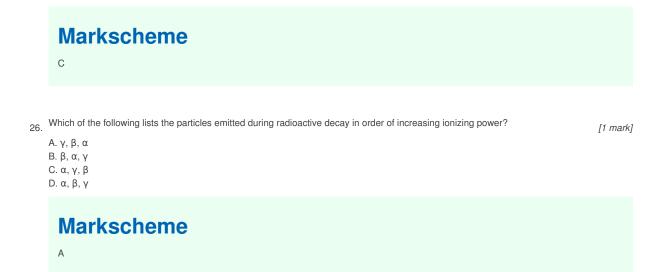
 $\mathsf{D}.\ _{9}^{17}\mathrm{X}$

Markscheme

В

24. The mass defect for deuterium is 4×10^{-30} kg. What is the binding energy of deuterium?

[1 mark]


```
A. 4×10<sup>-7</sup> eV
B. 8×10<sup>-2</sup> eV
```

C. 2×10⁶ eV

D. 2×10¹² eV

Markscheme

- 25. As quarks separate from each other within a hadron, the interaction between them becomes larger. What is the nature of this [1 mark] interaction?
 - A. Electrostatic
 - B. Gravitational
 - C. Strong nuclear
 - D. Weak nuclear

© International Baccalaureate Organization 2019 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for GEMS INTERNATONAL SCHOOL AL KHAIL